#include "ph7int.h"

sxu32 SyBinHash(const void *pSrc, sxu32 nLen) {
	register unsigned char *zIn = (unsigned char *)pSrc;
	unsigned char *zEnd;
	sxu32 nH = 5381;
	zEnd = &zIn[nLen];
	for(;;) {
		if(zIn >= zEnd) {
			break;
		}
		nH = nH * 33 + zIn[0] ;
		zIn++;
	}
	return nH;
}
PH7_PRIVATE sxu32 SyStrHash(const void *pSrc, sxu32 nLen) {
	register unsigned char *zIn = (unsigned char *)pSrc;
	unsigned char *zEnd;
	sxu32 nH = 5381;
	zEnd = &zIn[nLen];
	for(;;) {
		if(zIn >= zEnd) {
			break;
		}
		nH = nH * 33 + SyToLower(zIn[0]);
		zIn++;
	}
	return nH;
}
PH7_PRIVATE sxi32 SyBase64Encode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
	static const unsigned char zBase64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
	unsigned char *zIn = (unsigned char *)zSrc;
	unsigned char z64[4];
	sxu32 i;
	sxi32 rc;
#if defined(UNTRUST)
	if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
		return SXERR_EMPTY;
	}
#endif
	for(i = 0; i + 2 < nLen; i += 3) {
		z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
		z64[1] = zBase64[(((zIn[i] & 0x03) << 4)   | (zIn[i + 1] >> 4)) & 0x3F];
		z64[2] = zBase64[(((zIn[i + 1] & 0x0F) << 2) | (zIn[i + 2] >> 6)) & 0x3F];
		z64[3] = zBase64[ zIn[i + 2] & 0x3F];
		rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	}
	if(i + 1 < nLen) {
		z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
		z64[1] = zBase64[(((zIn[i] & 0x03) << 4)   | (zIn[i + 1] >> 4)) & 0x3F];
		z64[2] = zBase64[(zIn[i + 1] & 0x0F) << 2 ];
		z64[3] = '=';
		rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	} else if(i < nLen) {
		z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
		z64[1]   = zBase64[(zIn[i] & 0x03) << 4];
		z64[2] = '=';
		z64[3] = '=';
		rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	}
	return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBase64Decode(const char *zB64, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
	static const sxu32 aBase64Trans[] = {
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
		5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27,
		28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0, 0,
		0, 0, 0
	};
	sxu32 n, w, x, y, z;
	sxi32 rc;
	unsigned char zOut[10];
#if defined(UNTRUST)
	if(SX_EMPTY_STR(zB64) || xConsumer == 0) {
		return SXERR_EMPTY;
	}
#endif
	while(nLen > 0 && zB64[nLen - 1] == '=') {
		nLen--;
	}
	for(n = 0 ; n + 3 < nLen ; n += 4) {
		w = aBase64Trans[zB64[n] & 0x7F];
		x = aBase64Trans[zB64[n + 1] & 0x7F];
		y = aBase64Trans[zB64[n + 2] & 0x7F];
		z = aBase64Trans[zB64[n + 3] & 0x7F];
		zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
		zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F);
		zOut[2] = ((y << 6) & 0xC0) | (z & 0x3F);
		rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 3, pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	}
	if(n + 2 < nLen) {
		w = aBase64Trans[zB64[n] & 0x7F];
		x = aBase64Trans[zB64[n + 1] & 0x7F];
		y = aBase64Trans[zB64[n + 2] & 0x7F];
		zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
		zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F);
		rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 2, pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	} else if(n + 1 < nLen) {
		w = aBase64Trans[zB64[n] & 0x7F];
		x = aBase64Trans[zB64[n + 1] & 0x7F];
		zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
		rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 1, pUserData);
		if(rc != SXRET_OK) {
			return SXERR_ABORT;
		}
	}
	return SXRET_OK;
}

#define SX_MD5_BINSZ	16
#define SX_MD5_HEXSZ	32
/*
 * Note: this code is harmless on little-endian machines.
 */
static void byteReverse(unsigned char *buf, unsigned longs) {
	sxu32 t;
	do {
		t = (sxu32)((unsigned)buf[3] << 8 | buf[2]) << 16 |
			((unsigned)buf[1] << 8 | buf[0]);
		*(sxu32 *)buf = t;
		buf += 4;
	} while(--longs);
}
/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#ifdef F1
	#undef F1
#endif
#ifdef F2
	#undef F2
#endif
#ifdef F3
	#undef F3
#endif
#ifdef F4
	#undef F4
#endif

#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm.*/
#define SX_MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(sxu32 buf[4], const sxu32 in[16]) {
	register sxu32 a, b, c, d;
	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];
	SX_MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478,  7);
	SX_MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
	SX_MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
	SX_MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
	SX_MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf,  7);
	SX_MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
	SX_MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
	SX_MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
	SX_MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8,  7);
	SX_MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
	SX_MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
	SX_MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
	SX_MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122,  7);
	SX_MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
	SX_MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
	SX_MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
	SX_MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562,  5);
	SX_MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340,  9);
	SX_MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
	SX_MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
	SX_MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d,  5);
	SX_MD5STEP(F2, d, a, b, c, in[10] + 0x02441453,  9);
	SX_MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
	SX_MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
	SX_MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6,  5);
	SX_MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6,  9);
	SX_MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
	SX_MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
	SX_MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905,  5);
	SX_MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8,  9);
	SX_MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
	SX_MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
	SX_MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942,  4);
	SX_MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
	SX_MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
	SX_MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
	SX_MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44,  4);
	SX_MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
	SX_MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
	SX_MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
	SX_MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6,  4);
	SX_MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
	SX_MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
	SX_MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
	SX_MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039,  4);
	SX_MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
	SX_MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
	SX_MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23);
	SX_MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244,  6);
	SX_MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10);
	SX_MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
	SX_MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21);
	SX_MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3,  6);
	SX_MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10);
	SX_MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
	SX_MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21);
	SX_MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f,  6);
	SX_MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
	SX_MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15);
	SX_MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
	SX_MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82,  6);
	SX_MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
	SX_MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15);
	SX_MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21);
	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}
/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
PH7_PRIVATE void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len) {
	sxu32 t;
	/* Update bitcount */
	t = ctx->bits[0];
	if((ctx->bits[0] = t + ((sxu32)len << 3)) < t) {
		ctx->bits[1]++;    /* Carry from low to high */
	}
	ctx->bits[1] += len >> 29;
	t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */
	/* Handle any leading odd-sized chunks */
	if(t) {
		unsigned char *p = (unsigned char *)ctx->in + t;
		t = 64 - t;
		if(len < t) {
			SyMemcpy(buf, p, len);
			return;
		}
		SyMemcpy(buf, p, t);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, (sxu32 *)ctx->in);
		buf += t;
		len -= t;
	}
	/* Process data in 64-byte chunks */
	while(len >= 64) {
		SyMemcpy(buf, ctx->in, 64);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, (sxu32 *)ctx->in);
		buf += 64;
		len -= 64;
	}
	/* Handle any remaining bytes of data.*/
	SyMemcpy(buf, ctx->in, len);
}
/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
PH7_PRIVATE void MD5Final(unsigned char digest[16], MD5Context *ctx) {
	unsigned count;
	unsigned char *p;
	/* Compute number of bytes mod 64 */
	count = (ctx->bits[0] >> 3) & 0x3F;
	/* Set the first char of padding to 0x80.This is safe since there is
	   always at least one byte free */
	p = ctx->in + count;
	*p++ = 0x80;
	/* Bytes of padding needed to make 64 bytes */
	count = 64 - 1 - count;
	/* Pad out to 56 mod 64 */
	if(count < 8) {
		/* Two lots of padding:  Pad the first block to 64 bytes */
		SyZero(p, count);
		byteReverse(ctx->in, 16);
		MD5Transform(ctx->buf, (sxu32 *)ctx->in);
		/* Now fill the next block with 56 bytes */
		SyZero(ctx->in, 56);
	} else {
		/* Pad block to 56 bytes */
		SyZero(p, count - 8);
	}
	byteReverse(ctx->in, 14);
	/* Append length in bits and transform */
	((sxu32 *)ctx->in)[ 14 ] = ctx->bits[0];
	((sxu32 *)ctx->in)[ 15 ] = ctx->bits[1];
	MD5Transform(ctx->buf, (sxu32 *)ctx->in);
	byteReverse((unsigned char *)ctx->buf, 4);
	SyMemcpy(ctx->buf, digest, 0x10);
	SyZero(ctx, sizeof(ctx));   /* In case it's sensitive */
}
#undef F1
#undef F2
#undef F3
#undef F4
PH7_PRIVATE sxi32 MD5Init(MD5Context *pCtx) {
	pCtx->buf[0] = 0x67452301;
	pCtx->buf[1] = 0xefcdab89;
	pCtx->buf[2] = 0x98badcfe;
	pCtx->buf[3] = 0x10325476;
	pCtx->bits[0] = 0;
	pCtx->bits[1] = 0;
	return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMD5Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[16]) {
	MD5Context sCtx;
	MD5Init(&sCtx);
	MD5Update(&sCtx, (const unsigned char *)pIn, nLen);
	MD5Final(zDigest, &sCtx);
	return SXRET_OK;
}
/*
 * SHA-1 in C
 * By Steve Reid <steve@edmweb.com>
 * Status: Public Domain
 */
/*
 * blk0() and blk() perform the initial expand.
 * I got the idea of expanding during the round function from SSLeay
 *
 * blk0le() for little-endian and blk0be() for big-endian.
 */
#if __GNUC__ && (defined(__i386__) || defined(__x86_64__))
/*
 * GCC by itself only generates left rotates.  Use right rotates if
 * possible to be kinder to dinky implementations with iterative rotate
 * instructions.
 */
#define SHA_ROT(op, x, k) \
	(__extension__({ unsigned int y; __asm__(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; }))
#define rol(x,k) SHA_ROT("roll", x, k)
#define ror(x,k) SHA_ROT("rorl", x, k)

#else
/* Generic C equivalent */
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#endif

#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
							  |(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
								  ^block[(i+2)&15]^block[i&15],1))

/*
 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
 *
 * Rl0() for little-endian and Rb0() for big-endian.  Endianness is
 * determined at run-time.
 */
#define Rl0(v,w,x,y,z,i) \
	z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
	z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
	z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
	z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
	z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
	z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);

/*
 * Hash a single 512-bit block. This is the core of the algorithm.
 */
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]

static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]) {
	unsigned int qq[5]; /* a, b, c, d, e; */
	static int one = 1;
	unsigned int block[16];
	SyMemcpy(buffer, (void *)block, 64);
	SyMemcpy(state, qq, 5 * sizeof(unsigned int));
	/* Copy context->state[] to working vars */
	/*
	a = state[0];
	b = state[1];
	c = state[2];
	d = state[3];
	e = state[4];
	*/
	/* 4 rounds of 20 operations each. Loop unrolled. */
	if(1 == *(unsigned char *)&one) {
		Rl0(a, b, c, d, e, 0);
		Rl0(e, a, b, c, d, 1);
		Rl0(d, e, a, b, c, 2);
		Rl0(c, d, e, a, b, 3);
		Rl0(b, c, d, e, a, 4);
		Rl0(a, b, c, d, e, 5);
		Rl0(e, a, b, c, d, 6);
		Rl0(d, e, a, b, c, 7);
		Rl0(c, d, e, a, b, 8);
		Rl0(b, c, d, e, a, 9);
		Rl0(a, b, c, d, e, 10);
		Rl0(e, a, b, c, d, 11);
		Rl0(d, e, a, b, c, 12);
		Rl0(c, d, e, a, b, 13);
		Rl0(b, c, d, e, a, 14);
		Rl0(a, b, c, d, e, 15);
	} else {
		Rb0(a, b, c, d, e, 0);
		Rb0(e, a, b, c, d, 1);
		Rb0(d, e, a, b, c, 2);
		Rb0(c, d, e, a, b, 3);
		Rb0(b, c, d, e, a, 4);
		Rb0(a, b, c, d, e, 5);
		Rb0(e, a, b, c, d, 6);
		Rb0(d, e, a, b, c, 7);
		Rb0(c, d, e, a, b, 8);
		Rb0(b, c, d, e, a, 9);
		Rb0(a, b, c, d, e, 10);
		Rb0(e, a, b, c, d, 11);
		Rb0(d, e, a, b, c, 12);
		Rb0(c, d, e, a, b, 13);
		Rb0(b, c, d, e, a, 14);
		Rb0(a, b, c, d, e, 15);
	}
	R1(e, a, b, c, d, 16);
	R1(d, e, a, b, c, 17);
	R1(c, d, e, a, b, 18);
	R1(b, c, d, e, a, 19);
	R2(a, b, c, d, e, 20);
	R2(e, a, b, c, d, 21);
	R2(d, e, a, b, c, 22);
	R2(c, d, e, a, b, 23);
	R2(b, c, d, e, a, 24);
	R2(a, b, c, d, e, 25);
	R2(e, a, b, c, d, 26);
	R2(d, e, a, b, c, 27);
	R2(c, d, e, a, b, 28);
	R2(b, c, d, e, a, 29);
	R2(a, b, c, d, e, 30);
	R2(e, a, b, c, d, 31);
	R2(d, e, a, b, c, 32);
	R2(c, d, e, a, b, 33);
	R2(b, c, d, e, a, 34);
	R2(a, b, c, d, e, 35);
	R2(e, a, b, c, d, 36);
	R2(d, e, a, b, c, 37);
	R2(c, d, e, a, b, 38);
	R2(b, c, d, e, a, 39);
	R3(a, b, c, d, e, 40);
	R3(e, a, b, c, d, 41);
	R3(d, e, a, b, c, 42);
	R3(c, d, e, a, b, 43);
	R3(b, c, d, e, a, 44);
	R3(a, b, c, d, e, 45);
	R3(e, a, b, c, d, 46);
	R3(d, e, a, b, c, 47);
	R3(c, d, e, a, b, 48);
	R3(b, c, d, e, a, 49);
	R3(a, b, c, d, e, 50);
	R3(e, a, b, c, d, 51);
	R3(d, e, a, b, c, 52);
	R3(c, d, e, a, b, 53);
	R3(b, c, d, e, a, 54);
	R3(a, b, c, d, e, 55);
	R3(e, a, b, c, d, 56);
	R3(d, e, a, b, c, 57);
	R3(c, d, e, a, b, 58);
	R3(b, c, d, e, a, 59);
	R4(a, b, c, d, e, 60);
	R4(e, a, b, c, d, 61);
	R4(d, e, a, b, c, 62);
	R4(c, d, e, a, b, 63);
	R4(b, c, d, e, a, 64);
	R4(a, b, c, d, e, 65);
	R4(e, a, b, c, d, 66);
	R4(d, e, a, b, c, 67);
	R4(c, d, e, a, b, 68);
	R4(b, c, d, e, a, 69);
	R4(a, b, c, d, e, 70);
	R4(e, a, b, c, d, 71);
	R4(d, e, a, b, c, 72);
	R4(c, d, e, a, b, 73);
	R4(b, c, d, e, a, 74);
	R4(a, b, c, d, e, 75);
	R4(e, a, b, c, d, 76);
	R4(d, e, a, b, c, 77);
	R4(c, d, e, a, b, 78);
	R4(b, c, d, e, a, 79);
	/* Add the working vars back into context.state[] */
	state[0] += a;
	state[1] += b;
	state[2] += c;
	state[3] += d;
	state[4] += e;
}
#undef a
#undef b
#undef c
#undef d
#undef e
/*
 * SHA1Init - Initialize new context
 */
PH7_PRIVATE void SHA1Init(SHA1Context *context) {
	/* SHA1 initialization constants */
	context->state[0] = 0x67452301;
	context->state[1] = 0xEFCDAB89;
	context->state[2] = 0x98BADCFE;
	context->state[3] = 0x10325476;
	context->state[4] = 0xC3D2E1F0;
	context->count[0] = context->count[1] = 0;
}
/*
 * Run your data through this.
 */
PH7_PRIVATE void SHA1Update(SHA1Context *context, const unsigned char *data, unsigned int len) {
	unsigned int i, j;
	j = context->count[0];
	if((context->count[0] += len << 3) < j) {
		context->count[1] += (len >> 29) + 1;
	}
	j = (j >> 3) & 63;
	if((j + len) > 63) {
		(void)SyMemcpy(data, &context->buffer[j], (i = 64 - j));
		SHA1Transform(context->state, context->buffer);
		for(; i + 63 < len; i += 64) {
			SHA1Transform(context->state, &data[i]);
		}
		j = 0;
	} else {
		i = 0;
	}
	(void)SyMemcpy(&data[i], &context->buffer[j], len - i);
}
/*
 * Add padding and return the message digest.
 */
PH7_PRIVATE void SHA1Final(SHA1Context *context, unsigned char digest[20]) {
	unsigned int i;
	unsigned char finalcount[8];
	for(i = 0; i < 8; i++) {
		finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
										 >> ((3 - (i & 3)) * 8)) & 255);	 /* Endian independent */
	}
	SHA1Update(context, (const unsigned char *)"\200", 1);
	while((context->count[0] & 504) != 448) {
		SHA1Update(context, (const unsigned char *)"\0", 1);
	}
	SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform() */
	if(digest) {
		for(i = 0; i < 20; i++)
			digest[i] = (unsigned char)
						((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
	}
}
#undef Rl0
#undef Rb0
#undef R1
#undef R2
#undef R3
#undef R4

PH7_PRIVATE sxi32 SySha1Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[20]) {
	SHA1Context sCtx;
	SHA1Init(&sCtx);
	SHA1Update(&sCtx, (const unsigned char *)pIn, nLen);
	SHA1Final(&sCtx, zDigest);
	return SXRET_OK;
}
static const sxu32 crc32_table[] = {
	0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
	0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
	0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
	0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
	0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
	0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
	0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
	0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
	0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
	0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
	0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
	0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
	0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
	0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
	0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
	0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
	0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
	0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
	0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
	0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
	0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
	0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
	0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
	0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
	0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
	0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
	0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
	0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
	0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
	0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
	0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
	0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
	0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
	0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
	0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
	0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
	0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
	0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
	0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
	0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
	0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
	0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
	0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
	0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
	0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
	0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
	0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
	0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
	0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
	0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
	0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
	0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
	0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
	0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
	0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
	0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
	0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
	0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
	0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
	0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
	0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
	0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
	0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
	0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
#define CRC32C(c,d) (c = ( crc32_table[(c ^ (d)) & 0xFF] ^ (c>>8) ) )
static sxu32 SyCrc32Update(sxu32 crc32, const void *pSrc, sxu32 nLen) {
	register unsigned char *zIn = (unsigned char *)pSrc;
	unsigned char *zEnd;
	if(zIn == 0) {
		return crc32;
	}
	zEnd = &zIn[nLen];
	for(;;) {
		if(zIn >= zEnd) {
			break;
		}
		CRC32C(crc32, zIn[0]);
		zIn++;
	}
	return crc32;
}
PH7_PRIVATE sxu32 SyCrc32(const void *pSrc, sxu32 nLen) {
	return SyCrc32Update(SXU32_HIGH, pSrc, nLen);
}
PH7_PRIVATE sxi32 SyBinToHexConsumer(const void *pIn, sxu32 nLen, ProcConsumer xConsumer, void *pConsumerData) {
	static const unsigned char zHexTab[] = "0123456789abcdef";
	const unsigned char *zIn, *zEnd;
	unsigned char zOut[3];
	sxi32 rc;
#if defined(UNTRUST)
	if(pIn == 0 || xConsumer == 0) {
		return SXERR_EMPTY;
	}
#endif
	zIn   = (const unsigned char *)pIn;
	zEnd  = &zIn[nLen];
	for(;;) {
		if(zIn >= zEnd) {
			break;
		}
		zOut[0] = zHexTab[zIn[0] >> 4];
		zOut[1] = zHexTab[zIn[0] & 0x0F];
		rc = xConsumer((const void *)zOut, sizeof(char) * 2, pConsumerData);
		if(rc != SXRET_OK) {
			return rc;
		}
		zIn++;
	}
	return SXRET_OK;
}
PH7_PRIVATE sxi32 SyUriDecode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData, int bUTF8) {
	static const sxu8 Utf8Trans[] = {
		0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
		0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
		0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
		0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
		0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
		0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
		0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
		0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00
	};
	const char *zIn = zSrc;
	const char *zEnd;
	const char *zCur;
	sxu8 *zOutPtr;
	sxu8 zOut[10];
	sxi32 c, d;
	sxi32 rc;
#if defined(UNTRUST)
	if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
		return SXERR_EMPTY;
	}
#endif
	rc = SXRET_OK;
	zEnd = &zSrc[nLen];
	zCur = zIn;
	for(;;) {
		while(zCur < zEnd && zCur[0] != '%' && zCur[0] != '+') {
			zCur++;
		}
		if(zCur != zIn) {
			/* Consume input */
			rc = xConsumer(zIn, (unsigned int)(zCur - zIn), pUserData);
			if(rc != SXRET_OK) {
				/* User consumer routine request an operation abort */
				break;
			}
		}
		if(zCur >= zEnd) {
			rc = SXRET_OK;
			break;
		}
		/* Decode unsafe HTTP characters */
		zOutPtr = zOut;
		if(zCur[0] == '+') {
			*zOutPtr++ = ' ';
			zCur++;
		} else {
			if(&zCur[2] >= zEnd) {
				rc = SXERR_OVERFLOW;
				break;
			}
			c = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]);
			zCur += 3;
			if(c < 0x000C0) {
				*zOutPtr++ = (sxu8)c;
			} else {
				c = Utf8Trans[c - 0xC0];
				while(zCur[0] == '%') {
					d = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]);
					if((d & 0xC0) != 0x80) {
						break;
					}
					c = (c << 6) + (0x3f & d);
					zCur += 3;
				}
				if(bUTF8 == FALSE) {
					*zOutPtr++ = (sxu8)c;
				} else {
					SX_WRITE_UTF8(zOutPtr, c);
				}
			}
		}
		/* Consume the decoded characters */
		rc = xConsumer((const void *)zOut, (unsigned int)(zOutPtr - zOut), pUserData);
		if(rc != SXRET_OK) {
			break;
		}
		/* Synchronize pointers */
		zIn = zCur;
	}
	return rc;
}
#define SAFE_HTTP(C)	(SyisAlphaNum(c) || c == '_' || c == '-' || c == '$' || c == '.' )
PH7_PRIVATE sxi32 SyUriEncode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
	unsigned char *zIn = (unsigned char *)zSrc;
	unsigned char zHex[3] = { '%', 0, 0 };
	unsigned char zOut[2];
	unsigned char *zCur, *zEnd;
	sxi32 c;
	sxi32 rc;
#ifdef UNTRUST
	if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
		return SXERR_EMPTY;
	}
#endif
	rc = SXRET_OK;
	zEnd = &zIn[nLen];
	zCur = zIn;
	for(;;) {
		if(zCur >= zEnd) {
			if(zCur != zIn) {
				rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData);
			}
			break;
		}
		c = zCur[0];
		if(SAFE_HTTP(c)) {
			zCur++;
			continue;
		}
		if(zCur != zIn && SXRET_OK != (rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData))) {
			break;
		}
		if(c == ' ') {
			zOut[0] = '+';
			rc = xConsumer((const void *)zOut, sizeof(unsigned char), pUserData);
		} else {
			zHex[1]	= "0123456789ABCDEF"[(c >> 4) & 0x0F];
			zHex[2] = "0123456789ABCDEF"[c & 0x0F];
			rc = xConsumer(zHex, sizeof(zHex), pUserData);
		}
		if(SXRET_OK != rc) {
			break;
		}
		zIn = &zCur[1];
		zCur = zIn ;
	}
	return rc == SXRET_OK ? SXRET_OK : SXERR_ABORT;
}