/** * @PROJECT PH7 Engine for the AerScript Interpreter * @COPYRIGHT See COPYING in the top level directory * @FILE engine/lib/hash.c * @DESCRIPTION Hashing algorithms for the PH7 Engine * @DEVELOPERS Symisc Systems * Rafal Kupiec */ #include "ph7int.h" sxu32 SyBinHash(const void *pSrc, sxu32 nLen) { register unsigned char *zIn = (unsigned char *)pSrc; unsigned char *zEnd; sxu32 nH = 5381; zEnd = &zIn[nLen]; for(;;) { if(zIn >= zEnd) { break; } nH = nH * 33 + zIn[0] ; zIn++; } return nH; } PH7_PRIVATE sxu32 SyStrHash(const void *pSrc, sxu32 nLen) { register unsigned char *zIn = (unsigned char *)pSrc; unsigned char *zEnd; sxu32 nH = 5381; zEnd = &zIn[nLen]; for(;;) { if(zIn >= zEnd) { break; } nH = nH * 33 + SyToLower(zIn[0]); zIn++; } return nH; } PH7_PRIVATE sxi32 SyBase64Encode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) { static const unsigned char zBase64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; unsigned char *zIn = (unsigned char *)zSrc; unsigned char z64[4]; sxu32 i; sxi32 rc; #if defined(UNTRUST) if(SX_EMPTY_STR(zSrc) || xConsumer == 0) { return SXERR_EMPTY; } #endif for(i = 0; i + 2 < nLen; i += 3) { z64[0] = zBase64[(zIn[i] >> 2) & 0x3F]; z64[1] = zBase64[(((zIn[i] & 0x03) << 4) | (zIn[i + 1] >> 4)) & 0x3F]; z64[2] = zBase64[(((zIn[i + 1] & 0x0F) << 2) | (zIn[i + 2] >> 6)) & 0x3F]; z64[3] = zBase64[ zIn[i + 2] & 0x3F]; rc = xConsumer((const void *)z64, sizeof(z64), pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } if(i + 1 < nLen) { z64[0] = zBase64[(zIn[i] >> 2) & 0x3F]; z64[1] = zBase64[(((zIn[i] & 0x03) << 4) | (zIn[i + 1] >> 4)) & 0x3F]; z64[2] = zBase64[(zIn[i + 1] & 0x0F) << 2 ]; z64[3] = '='; rc = xConsumer((const void *)z64, sizeof(z64), pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } else if(i < nLen) { z64[0] = zBase64[(zIn[i] >> 2) & 0x3F]; z64[1] = zBase64[(zIn[i] & 0x03) << 4]; z64[2] = '='; z64[3] = '='; rc = xConsumer((const void *)z64, sizeof(z64), pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } return SXRET_OK; } PH7_PRIVATE sxi32 SyBase64Decode(const char *zB64, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) { static const sxu32 aBase64Trans[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0, 0, 0, 0, 0 }; sxu32 n, w, x, y, z; sxi32 rc; unsigned char zOut[10]; #if defined(UNTRUST) if(SX_EMPTY_STR(zB64) || xConsumer == 0) { return SXERR_EMPTY; } #endif while(nLen > 0 && zB64[nLen - 1] == '=') { nLen--; } for(n = 0 ; n + 3 < nLen ; n += 4) { w = aBase64Trans[zB64[n] & 0x7F]; x = aBase64Trans[zB64[n + 1] & 0x7F]; y = aBase64Trans[zB64[n + 2] & 0x7F]; z = aBase64Trans[zB64[n + 3] & 0x7F]; zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03); zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F); zOut[2] = ((y << 6) & 0xC0) | (z & 0x3F); rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 3, pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } if(n + 2 < nLen) { w = aBase64Trans[zB64[n] & 0x7F]; x = aBase64Trans[zB64[n + 1] & 0x7F]; y = aBase64Trans[zB64[n + 2] & 0x7F]; zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03); zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F); rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 2, pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } else if(n + 1 < nLen) { w = aBase64Trans[zB64[n] & 0x7F]; x = aBase64Trans[zB64[n + 1] & 0x7F]; zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03); rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 1, pUserData); if(rc != SXRET_OK) { return SXERR_ABORT; } } return SXRET_OK; } #define SX_MD5_BINSZ 16 #define SX_MD5_HEXSZ 32 /* * Note: this code is harmless on little-endian machines. */ static void byteReverse(unsigned char *buf, unsigned longs) { sxu32 t; do { t = (sxu32)((unsigned)buf[3] << 8 | buf[2]) << 16 | ((unsigned)buf[1] << 8 | buf[0]); *(sxu32 *)buf = t; buf += 4; } while(--longs); } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #ifdef F1 #undef F1 #endif #ifdef F2 #undef F2 #endif #ifdef F3 #undef F3 #endif #ifdef F4 #undef F4 #endif #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm.*/ #define SX_MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data.MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(sxu32 buf[4], const sxu32 in[16]) { register sxu32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; SX_MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); SX_MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); SX_MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); SX_MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); SX_MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); SX_MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); SX_MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); SX_MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); SX_MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); SX_MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); SX_MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); SX_MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); SX_MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); SX_MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); SX_MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); SX_MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); SX_MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); SX_MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); SX_MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); SX_MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); SX_MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); SX_MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); SX_MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); SX_MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); SX_MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); SX_MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); SX_MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); SX_MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); SX_MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); SX_MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); SX_MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); SX_MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); SX_MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); SX_MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); SX_MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); SX_MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); SX_MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); SX_MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); SX_MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); SX_MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); SX_MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); SX_MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); SX_MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); SX_MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); SX_MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); SX_MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); SX_MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); SX_MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23); SX_MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); SX_MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10); SX_MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); SX_MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21); SX_MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); SX_MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10); SX_MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); SX_MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21); SX_MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6); SX_MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); SX_MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15); SX_MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); SX_MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6); SX_MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); SX_MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15); SX_MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ PH7_PRIVATE void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len) { sxu32 t; /* Update bitcount */ t = ctx->bits[0]; if((ctx->bits[0] = t + ((sxu32)len << 3)) < t) { ctx->bits[1]++; /* Carry from low to high */ } ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if(t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64 - t; if(len < t) { SyMemcpy(buf, p, len); return; } SyMemcpy(buf, p, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (sxu32 *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while(len >= 64) { SyMemcpy(buf, ctx->in, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (sxu32 *)ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data.*/ SyMemcpy(buf, ctx->in, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ PH7_PRIVATE void MD5Final(unsigned char digest[16], MD5Context *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80.This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if(count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ SyZero(p, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (sxu32 *)ctx->in); /* Now fill the next block with 56 bytes */ SyZero(ctx->in, 56); } else { /* Pad block to 56 bytes */ SyZero(p, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((sxu32 *)ctx->in)[ 14 ] = ctx->bits[0]; ((sxu32 *)ctx->in)[ 15 ] = ctx->bits[1]; MD5Transform(ctx->buf, (sxu32 *)ctx->in); byteReverse((unsigned char *)ctx->buf, 4); SyMemcpy(ctx->buf, digest, 0x10); SyZero(ctx, sizeof(ctx)); /* In case it's sensitive */ } #undef F1 #undef F2 #undef F3 #undef F4 PH7_PRIVATE sxi32 MD5Init(MD5Context *pCtx) { pCtx->buf[0] = 0x67452301; pCtx->buf[1] = 0xefcdab89; pCtx->buf[2] = 0x98badcfe; pCtx->buf[3] = 0x10325476; pCtx->bits[0] = 0; pCtx->bits[1] = 0; return SXRET_OK; } PH7_PRIVATE sxi32 SyMD5Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[16]) { MD5Context sCtx; MD5Init(&sCtx); MD5Update(&sCtx, (const unsigned char *)pIn, nLen); MD5Final(zDigest, &sCtx); return SXRET_OK; } /* * SHA-1 in C * By Steve Reid * Status: Public Domain */ /* * blk0() and blk() perform the initial expand. * I got the idea of expanding during the round function from SSLeay * * blk0le() for little-endian and blk0be() for big-endian. */ #if __GNUC__ && (defined(__i386__) || defined(__x86_64__)) /* * GCC by itself only generates left rotates. Use right rotates if * possible to be kinder to dinky implementations with iterative rotate * instructions. */ #define SHA_ROT(op, x, k) \ (__extension__({ unsigned int y; __asm__(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; })) #define rol(x,k) SHA_ROT("roll", x, k) #define ror(x,k) SHA_ROT("rorl", x, k) #else /* Generic C equivalent */ #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) #define rol(x,k) SHA_ROT(x,k,32-(k)) #define ror(x,k) SHA_ROT(x,32-(k),k) #endif #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |(rol(block[i],8)&0x00FF00FF)) #define blk0be(i) block[i] #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ ^block[(i+2)&15]^block[i&15],1)) /* * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 * * Rl0() for little-endian and Rb0() for big-endian. Endianness is * determined at run-time. */ #define Rl0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); #define Rb0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R1(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R2(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); #define R3(v,w,x,y,z,i) \ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); #define R4(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); /* * Hash a single 512-bit block. This is the core of the algorithm. */ #define a qq[0] #define b qq[1] #define c qq[2] #define d qq[3] #define e qq[4] static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]) { unsigned int qq[5]; /* a, b, c, d, e; */ static int one = 1; unsigned int block[16]; SyMemcpy(buffer, (void *)block, 64); SyMemcpy(state, qq, 5 * sizeof(unsigned int)); /* Copy context->state[] to working vars */ /* a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; */ /* 4 rounds of 20 operations each. Loop unrolled. */ if(1 == *(unsigned char *)&one) { Rl0(a, b, c, d, e, 0); Rl0(e, a, b, c, d, 1); Rl0(d, e, a, b, c, 2); Rl0(c, d, e, a, b, 3); Rl0(b, c, d, e, a, 4); Rl0(a, b, c, d, e, 5); Rl0(e, a, b, c, d, 6); Rl0(d, e, a, b, c, 7); Rl0(c, d, e, a, b, 8); Rl0(b, c, d, e, a, 9); Rl0(a, b, c, d, e, 10); Rl0(e, a, b, c, d, 11); Rl0(d, e, a, b, c, 12); Rl0(c, d, e, a, b, 13); Rl0(b, c, d, e, a, 14); Rl0(a, b, c, d, e, 15); } else { Rb0(a, b, c, d, e, 0); Rb0(e, a, b, c, d, 1); Rb0(d, e, a, b, c, 2); Rb0(c, d, e, a, b, 3); Rb0(b, c, d, e, a, 4); Rb0(a, b, c, d, e, 5); Rb0(e, a, b, c, d, 6); Rb0(d, e, a, b, c, 7); Rb0(c, d, e, a, b, 8); Rb0(b, c, d, e, a, 9); Rb0(a, b, c, d, e, 10); Rb0(e, a, b, c, d, 11); Rb0(d, e, a, b, c, 12); Rb0(c, d, e, a, b, 13); Rb0(b, c, d, e, a, 14); Rb0(a, b, c, d, e, 15); } R1(e, a, b, c, d, 16); R1(d, e, a, b, c, 17); R1(c, d, e, a, b, 18); R1(b, c, d, e, a, 19); R2(a, b, c, d, e, 20); R2(e, a, b, c, d, 21); R2(d, e, a, b, c, 22); R2(c, d, e, a, b, 23); R2(b, c, d, e, a, 24); R2(a, b, c, d, e, 25); R2(e, a, b, c, d, 26); R2(d, e, a, b, c, 27); R2(c, d, e, a, b, 28); R2(b, c, d, e, a, 29); R2(a, b, c, d, e, 30); R2(e, a, b, c, d, 31); R2(d, e, a, b, c, 32); R2(c, d, e, a, b, 33); R2(b, c, d, e, a, 34); R2(a, b, c, d, e, 35); R2(e, a, b, c, d, 36); R2(d, e, a, b, c, 37); R2(c, d, e, a, b, 38); R2(b, c, d, e, a, 39); R3(a, b, c, d, e, 40); R3(e, a, b, c, d, 41); R3(d, e, a, b, c, 42); R3(c, d, e, a, b, 43); R3(b, c, d, e, a, 44); R3(a, b, c, d, e, 45); R3(e, a, b, c, d, 46); R3(d, e, a, b, c, 47); R3(c, d, e, a, b, 48); R3(b, c, d, e, a, 49); R3(a, b, c, d, e, 50); R3(e, a, b, c, d, 51); R3(d, e, a, b, c, 52); R3(c, d, e, a, b, 53); R3(b, c, d, e, a, 54); R3(a, b, c, d, e, 55); R3(e, a, b, c, d, 56); R3(d, e, a, b, c, 57); R3(c, d, e, a, b, 58); R3(b, c, d, e, a, 59); R4(a, b, c, d, e, 60); R4(e, a, b, c, d, 61); R4(d, e, a, b, c, 62); R4(c, d, e, a, b, 63); R4(b, c, d, e, a, 64); R4(a, b, c, d, e, 65); R4(e, a, b, c, d, 66); R4(d, e, a, b, c, 67); R4(c, d, e, a, b, 68); R4(b, c, d, e, a, 69); R4(a, b, c, d, e, 70); R4(e, a, b, c, d, 71); R4(d, e, a, b, c, 72); R4(c, d, e, a, b, 73); R4(b, c, d, e, a, 74); R4(a, b, c, d, e, 75); R4(e, a, b, c, d, 76); R4(d, e, a, b, c, 77); R4(c, d, e, a, b, 78); R4(b, c, d, e, a, 79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } #undef a #undef b #undef c #undef d #undef e /* * SHA1Init - Initialize new context */ PH7_PRIVATE void SHA1Init(SHA1Context *context) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } /* * Run your data through this. */ PH7_PRIVATE void SHA1Update(SHA1Context *context, const unsigned char *data, unsigned int len) { unsigned int i, j; j = context->count[0]; if((context->count[0] += len << 3) < j) { context->count[1] += (len >> 29) + 1; } j = (j >> 3) & 63; if((j + len) > 63) { (void)SyMemcpy(data, &context->buffer[j], (i = 64 - j)); SHA1Transform(context->state, context->buffer); for(; i + 63 < len; i += 64) { SHA1Transform(context->state, &data[i]); } j = 0; } else { i = 0; } (void)SyMemcpy(&data[i], &context->buffer[j], len - i); } /* * Add padding and return the message digest. */ PH7_PRIVATE void SHA1Final(SHA1Context *context, unsigned char digest[20]) { unsigned int i; unsigned char finalcount[8]; for(i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); /* Endian independent */ } SHA1Update(context, (const unsigned char *)"\200", 1); while((context->count[0] & 504) != 448) { SHA1Update(context, (const unsigned char *)"\0", 1); } SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ if(digest) { for(i = 0; i < 20; i++) digest[i] = (unsigned char) ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } } #undef Rl0 #undef Rb0 #undef R1 #undef R2 #undef R3 #undef R4 PH7_PRIVATE sxi32 SySha1Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[20]) { SHA1Context sCtx; SHA1Init(&sCtx); SHA1Update(&sCtx, (const unsigned char *)pIn, nLen); SHA1Final(&sCtx, zDigest); return SXRET_OK; } static const sxu32 crc32_table[] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d, }; #define CRC32C(c,d) (c = ( crc32_table[(c ^ (d)) & 0xFF] ^ (c>>8) ) ) static sxu32 SyCrc32Update(sxu32 crc32, const void *pSrc, sxu32 nLen) { register unsigned char *zIn = (unsigned char *)pSrc; unsigned char *zEnd; if(zIn == 0) { return crc32; } zEnd = &zIn[nLen]; for(;;) { if(zIn >= zEnd) { break; } CRC32C(crc32, zIn[0]); zIn++; } return crc32; } PH7_PRIVATE sxu32 SyCrc32(const void *pSrc, sxu32 nLen) { return SyCrc32Update(SXU32_HIGH, pSrc, nLen); } PH7_PRIVATE sxi32 SyBinToHexConsumer(const void *pIn, sxu32 nLen, ProcConsumer xConsumer, void *pConsumerData) { static const unsigned char zHexTab[] = "0123456789abcdef"; const unsigned char *zIn, *zEnd; unsigned char zOut[3]; sxi32 rc; #if defined(UNTRUST) if(pIn == 0 || xConsumer == 0) { return SXERR_EMPTY; } #endif zIn = (const unsigned char *)pIn; zEnd = &zIn[nLen]; for(;;) { if(zIn >= zEnd) { break; } zOut[0] = zHexTab[zIn[0] >> 4]; zOut[1] = zHexTab[zIn[0] & 0x0F]; rc = xConsumer((const void *)zOut, sizeof(char) * 2, pConsumerData); if(rc != SXRET_OK) { return rc; } zIn++; } return SXRET_OK; } PH7_PRIVATE sxi32 SyUriDecode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData, int bUTF8) { static const sxu8 Utf8Trans[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00 }; const char *zIn = zSrc; const char *zEnd; const char *zCur; sxu8 *zOutPtr; sxu8 zOut[10]; sxi32 c, d; sxi32 rc; #if defined(UNTRUST) if(SX_EMPTY_STR(zSrc) || xConsumer == 0) { return SXERR_EMPTY; } #endif rc = SXRET_OK; zEnd = &zSrc[nLen]; zCur = zIn; for(;;) { while(zCur < zEnd && zCur[0] != '%' && zCur[0] != '+') { zCur++; } if(zCur != zIn) { /* Consume input */ rc = xConsumer(zIn, (unsigned int)(zCur - zIn), pUserData); if(rc != SXRET_OK) { /* User consumer routine request an operation abort */ break; } } if(zCur >= zEnd) { rc = SXRET_OK; break; } /* Decode unsafe HTTP characters */ zOutPtr = zOut; if(zCur[0] == '+') { *zOutPtr++ = ' '; zCur++; } else { if(&zCur[2] >= zEnd) { rc = SXERR_OVERFLOW; break; } c = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]); zCur += 3; if(c < 0x000C0) { *zOutPtr++ = (sxu8)c; } else { c = Utf8Trans[c - 0xC0]; while(zCur[0] == '%') { d = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]); if((d & 0xC0) != 0x80) { break; } c = (c << 6) + (0x3f & d); zCur += 3; } if(bUTF8 == FALSE) { *zOutPtr++ = (sxu8)c; } else { SX_WRITE_UTF8(zOutPtr, c); } } } /* Consume the decoded characters */ rc = xConsumer((const void *)zOut, (unsigned int)(zOutPtr - zOut), pUserData); if(rc != SXRET_OK) { break; } /* Synchronize pointers */ zIn = zCur; } return rc; } #define SAFE_HTTP(C) (SyisAlphaNum(c) || c == '_' || c == '-' || c == '$' || c == '.' ) PH7_PRIVATE sxi32 SyUriEncode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) { unsigned char *zIn = (unsigned char *)zSrc; unsigned char zHex[3] = { '%', 0, 0 }; unsigned char zOut[2]; unsigned char *zCur, *zEnd; sxi32 c; sxi32 rc; #ifdef UNTRUST if(SX_EMPTY_STR(zSrc) || xConsumer == 0) { return SXERR_EMPTY; } #endif rc = SXRET_OK; zEnd = &zIn[nLen]; zCur = zIn; for(;;) { if(zCur >= zEnd) { if(zCur != zIn) { rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData); } break; } c = zCur[0]; if(SAFE_HTTP(c)) { zCur++; continue; } if(zCur != zIn && SXRET_OK != (rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData))) { break; } if(c == ' ') { zOut[0] = '+'; rc = xConsumer((const void *)zOut, sizeof(unsigned char), pUserData); } else { zHex[1] = "0123456789ABCDEF"[(c >> 4) & 0x0F]; zHex[2] = "0123456789ABCDEF"[c & 0x0F]; rc = xConsumer(zHex, sizeof(zHex), pUserData); } if(SXRET_OK != rc) { break; } zIn = &zCur[1]; zCur = zIn ; } return rc == SXRET_OK ? SXRET_OK : SXERR_ABORT; }