Aer/lib.c

4902 lines
130 KiB
C

/*
* Symisc PH7: An embeddable bytecode compiler and a virtual machine for the PHP(5) programming language.
* Copyright (C) 2011-2012, Symisc Systems http://ph7.symisc.net/
* Version 2.1.4
* For information on licensing,redistribution of this file,and for a DISCLAIMER OF ALL WARRANTIES
* please contact Symisc Systems via:
* legal@symisc.net
* licensing@symisc.net
* contact@symisc.net
* or visit:
* http://ph7.symisc.net/
*/
/* $SymiscID: lib.c v5.1 Win7 2012-08-08 04:19 stable <chm@symisc.net> $ */
/*
* Symisc Run-Time API: A modern thread safe replacement of the standard libc
* Copyright (C) Symisc Systems 2007-2012, http://www.symisc.net/
*
* The Symisc Run-Time API is an independent project developed by symisc systems
* internally as a secure replacement of the standard libc.
* The library is re-entrant,thread-safe and platform independent.
*/
#include "ph7int.h"
#if defined(__WINNT__)
#include <Windows.h>
#else
#include <stdlib.h>
#endif
#if defined(PH7_ENABLE_THREADS)
/* SyRunTimeApi: sxmutex.c */
#if defined(__WINNT__)
struct SyMutex {
CRITICAL_SECTION sMutex;
sxu32 nType; /* Mutex type,one of SXMUTEX_TYPE_* */
};
/* Preallocated static mutex */
static SyMutex aStaticMutexes[] = {
{{0}, SXMUTEX_TYPE_STATIC_1},
{{0}, SXMUTEX_TYPE_STATIC_2},
{{0}, SXMUTEX_TYPE_STATIC_3},
{{0}, SXMUTEX_TYPE_STATIC_4},
{{0}, SXMUTEX_TYPE_STATIC_5},
{{0}, SXMUTEX_TYPE_STATIC_6}
};
static BOOL winMutexInit = FALSE;
static LONG winMutexLock = 0;
static sxi32 WinMutexGlobaInit(void) {
LONG rc;
rc = InterlockedCompareExchange(&winMutexLock, 1, 0);
if(rc == 0) {
sxu32 n;
for(n = 0 ; n < SX_ARRAYSIZE(aStaticMutexes) ; ++n) {
InitializeCriticalSection(&aStaticMutexes[n].sMutex);
}
winMutexInit = TRUE;
} else {
/* Someone else is doing this for us */
while(winMutexInit == FALSE) {
Sleep(1);
}
}
return SXRET_OK;
}
static void WinMutexGlobalRelease(void) {
LONG rc;
rc = InterlockedCompareExchange(&winMutexLock, 0, 1);
if(rc == 1) {
/* The first to decrement to zero does the actual global release */
if(winMutexInit == TRUE) {
sxu32 n;
for(n = 0 ; n < SX_ARRAYSIZE(aStaticMutexes) ; ++n) {
DeleteCriticalSection(&aStaticMutexes[n].sMutex);
}
winMutexInit = FALSE;
}
}
}
static SyMutex *WinMutexNew(int nType) {
SyMutex *pMutex = 0;
if(nType == SXMUTEX_TYPE_FAST || nType == SXMUTEX_TYPE_RECURSIVE) {
/* Allocate a new mutex */
pMutex = (SyMutex *)HeapAlloc(GetProcessHeap(), 0, sizeof(SyMutex));
if(pMutex == 0) {
return 0;
}
InitializeCriticalSection(&pMutex->sMutex);
} else {
/* Use a pre-allocated static mutex */
if(nType > SXMUTEX_TYPE_STATIC_6) {
nType = SXMUTEX_TYPE_STATIC_6;
}
pMutex = &aStaticMutexes[nType - 3];
}
pMutex->nType = nType;
return pMutex;
}
static void WinMutexRelease(SyMutex *pMutex) {
if(pMutex->nType == SXMUTEX_TYPE_FAST || pMutex->nType == SXMUTEX_TYPE_RECURSIVE) {
DeleteCriticalSection(&pMutex->sMutex);
HeapFree(GetProcessHeap(), 0, pMutex);
}
}
static void WinMutexEnter(SyMutex *pMutex) {
EnterCriticalSection(&pMutex->sMutex);
}
static sxi32 WinMutexTryEnter(SyMutex *pMutex) {
#ifdef _WIN32_WINNT
BOOL rc;
/* Only WindowsNT platforms */
rc = TryEnterCriticalSection(&pMutex->sMutex);
if(rc) {
return SXRET_OK;
} else {
return SXERR_BUSY;
}
#else
return SXERR_NOTIMPLEMENTED;
#endif
}
static void WinMutexLeave(SyMutex *pMutex) {
LeaveCriticalSection(&pMutex->sMutex);
}
/* Export Windows mutex interfaces */
static const SyMutexMethods sWinMutexMethods = {
WinMutexGlobaInit, /* xGlobalInit() */
WinMutexGlobalRelease, /* xGlobalRelease() */
WinMutexNew, /* xNew() */
WinMutexRelease, /* xRelease() */
WinMutexEnter, /* xEnter() */
WinMutexTryEnter, /* xTryEnter() */
WinMutexLeave /* xLeave() */
};
PH7_PRIVATE const SyMutexMethods *SyMutexExportMethods(void) {
return &sWinMutexMethods;
}
#elif defined(__UNIXES__)
#include <pthread.h>
struct SyMutex {
pthread_mutex_t sMutex;
sxu32 nType;
};
static SyMutex *UnixMutexNew(int nType) {
static SyMutex aStaticMutexes[] = {
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_1},
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_2},
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_3},
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_4},
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_5},
{PTHREAD_MUTEX_INITIALIZER, SXMUTEX_TYPE_STATIC_6}
};
SyMutex *pMutex;
if(nType == SXMUTEX_TYPE_FAST || nType == SXMUTEX_TYPE_RECURSIVE) {
pthread_mutexattr_t sRecursiveAttr;
/* Allocate a new mutex */
pMutex = (SyMutex *)malloc(sizeof(SyMutex));
if(pMutex == 0) {
return 0;
}
if(nType == SXMUTEX_TYPE_RECURSIVE) {
pthread_mutexattr_init(&sRecursiveAttr);
pthread_mutexattr_settype(&sRecursiveAttr, PTHREAD_MUTEX_RECURSIVE);
}
pthread_mutex_init(&pMutex->sMutex, nType == SXMUTEX_TYPE_RECURSIVE ? &sRecursiveAttr : 0);
if(nType == SXMUTEX_TYPE_RECURSIVE) {
pthread_mutexattr_destroy(&sRecursiveAttr);
}
} else {
/* Use a pre-allocated static mutex */
if(nType > SXMUTEX_TYPE_STATIC_6) {
nType = SXMUTEX_TYPE_STATIC_6;
}
pMutex = &aStaticMutexes[nType - 3];
}
pMutex->nType = nType;
return pMutex;
}
static void UnixMutexRelease(SyMutex *pMutex) {
if(pMutex->nType == SXMUTEX_TYPE_FAST || pMutex->nType == SXMUTEX_TYPE_RECURSIVE) {
pthread_mutex_destroy(&pMutex->sMutex);
free(pMutex);
}
}
static void UnixMutexEnter(SyMutex *pMutex) {
pthread_mutex_lock(&pMutex->sMutex);
}
static void UnixMutexLeave(SyMutex *pMutex) {
pthread_mutex_unlock(&pMutex->sMutex);
}
/* Export pthread mutex interfaces */
static const SyMutexMethods sPthreadMutexMethods = {
0, /* xGlobalInit() */
0, /* xGlobalRelease() */
UnixMutexNew, /* xNew() */
UnixMutexRelease, /* xRelease() */
UnixMutexEnter, /* xEnter() */
0, /* xTryEnter() */
UnixMutexLeave /* xLeave() */
};
PH7_PRIVATE const SyMutexMethods *SyMutexExportMethods(void) {
return &sPthreadMutexMethods;
}
#else
/* Host application must register their own mutex subsystem if the target
* platform is not an UNIX-like or windows systems.
*/
struct SyMutex {
sxu32 nType;
};
static SyMutex *DummyMutexNew(int nType) {
static SyMutex sMutex;
SXUNUSED(nType);
return &sMutex;
}
static void DummyMutexRelease(SyMutex *pMutex) {
SXUNUSED(pMutex);
}
static void DummyMutexEnter(SyMutex *pMutex) {
SXUNUSED(pMutex);
}
static void DummyMutexLeave(SyMutex *pMutex) {
SXUNUSED(pMutex);
}
/* Export the dummy mutex interfaces */
static const SyMutexMethods sDummyMutexMethods = {
0, /* xGlobalInit() */
0, /* xGlobalRelease() */
DummyMutexNew, /* xNew() */
DummyMutexRelease, /* xRelease() */
DummyMutexEnter, /* xEnter() */
0, /* xTryEnter() */
DummyMutexLeave /* xLeave() */
};
PH7_PRIVATE const SyMutexMethods *SyMutexExportMethods(void) {
return &sDummyMutexMethods;
}
#endif /* __WINNT__ */
#endif /* PH7_ENABLE_THREADS */
static void *SyOSHeapAlloc(sxu32 nByte) {
void *pNew;
#if defined(__WINNT__)
pNew = HeapAlloc(GetProcessHeap(), 0, nByte);
#else
pNew = malloc((size_t)nByte);
#endif
return pNew;
}
static void *SyOSHeapRealloc(void *pOld, sxu32 nByte) {
void *pNew;
#if defined(__WINNT__)
pNew = HeapReAlloc(GetProcessHeap(), 0, pOld, nByte);
#else
pNew = realloc(pOld, (size_t)nByte);
#endif
return pNew;
}
static void SyOSHeapFree(void *pPtr) {
#if defined(__WINNT__)
HeapFree(GetProcessHeap(), 0, pPtr);
#else
free(pPtr);
#endif
}
/* SyRunTimeApi:sxstr.c */
PH7_PRIVATE sxu32 SyStrlen(const char *zSrc) {
register const char *zIn = zSrc;
#if defined(UNTRUST)
if(zIn == 0) {
return 0;
}
#endif
for(;;) {
if(!zIn[0]) {
break;
}
zIn++;
if(!zIn[0]) {
break;
}
zIn++;
if(!zIn[0]) {
break;
}
zIn++;
if(!zIn[0]) {
break;
}
zIn++;
}
return (sxu32)(zIn - zSrc);
}
PH7_PRIVATE sxi32 SyByteFind(const char *zStr, sxu32 nLen, sxi32 c, sxu32 *pPos) {
const char *zIn = zStr;
const char *zEnd;
zEnd = &zIn[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
if(zIn[0] == c) {
if(pPos) {
*pPos = (sxu32)(zIn - zStr);
}
return SXRET_OK;
}
zIn++;
if(zIn >= zEnd) {
break;
}
if(zIn[0] == c) {
if(pPos) {
*pPos = (sxu32)(zIn - zStr);
}
return SXRET_OK;
}
zIn++;
if(zIn >= zEnd) {
break;
}
if(zIn[0] == c) {
if(pPos) {
*pPos = (sxu32)(zIn - zStr);
}
return SXRET_OK;
}
zIn++;
if(zIn >= zEnd) {
break;
}
if(zIn[0] == c) {
if(pPos) {
*pPos = (sxu32)(zIn - zStr);
}
return SXRET_OK;
}
zIn++;
}
return SXERR_NOTFOUND;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE sxi32 SyByteFind2(const char *zStr, sxu32 nLen, sxi32 c, sxu32 *pPos) {
const char *zIn = zStr;
const char *zEnd;
zEnd = &zIn[nLen - 1];
for(;;) {
if(zEnd < zIn) {
break;
}
if(zEnd[0] == c) {
if(pPos) {
*pPos = (sxu32)(zEnd - zIn);
}
return SXRET_OK;
}
zEnd--;
if(zEnd < zIn) {
break;
}
if(zEnd[0] == c) {
if(pPos) {
*pPos = (sxu32)(zEnd - zIn);
}
return SXRET_OK;
}
zEnd--;
if(zEnd < zIn) {
break;
}
if(zEnd[0] == c) {
if(pPos) {
*pPos = (sxu32)(zEnd - zIn);
}
return SXRET_OK;
}
zEnd--;
if(zEnd < zIn) {
break;
}
if(zEnd[0] == c) {
if(pPos) {
*pPos = (sxu32)(zEnd - zIn);
}
return SXRET_OK;
}
zEnd--;
}
return SXERR_NOTFOUND;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
PH7_PRIVATE sxi32 SyByteListFind(const char *zSrc, sxu32 nLen, const char *zList, sxu32 *pFirstPos) {
const char *zIn = zSrc;
const char *zPtr;
const char *zEnd;
sxi32 c;
zEnd = &zSrc[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
for(zPtr = zList ; (c = zPtr[0]) != 0 ; zPtr++) {
if(zIn[0] == c) {
if(pFirstPos) {
*pFirstPos = (sxu32)(zIn - zSrc);
}
return SXRET_OK;
}
}
zIn++;
if(zIn >= zEnd) {
break;
}
for(zPtr = zList ; (c = zPtr[0]) != 0 ; zPtr++) {
if(zIn[0] == c) {
if(pFirstPos) {
*pFirstPos = (sxu32)(zIn - zSrc);
}
return SXRET_OK;
}
}
zIn++;
if(zIn >= zEnd) {
break;
}
for(zPtr = zList ; (c = zPtr[0]) != 0 ; zPtr++) {
if(zIn[0] == c) {
if(pFirstPos) {
*pFirstPos = (sxu32)(zIn - zSrc);
}
return SXRET_OK;
}
}
zIn++;
if(zIn >= zEnd) {
break;
}
for(zPtr = zList ; (c = zPtr[0]) != 0 ; zPtr++) {
if(zIn[0] == c) {
if(pFirstPos) {
*pFirstPos = (sxu32)(zIn - zSrc);
}
return SXRET_OK;
}
}
zIn++;
}
return SXERR_NOTFOUND;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE sxi32 SyStrncmp(const char *zLeft, const char *zRight, sxu32 nLen) {
const unsigned char *zP = (const unsigned char *)zLeft;
const unsigned char *zQ = (const unsigned char *)zRight;
if(SX_EMPTY_STR(zP) || SX_EMPTY_STR(zQ)) {
return SX_EMPTY_STR(zP) ? (SX_EMPTY_STR(zQ) ? 0 : -1) : 1;
}
if(nLen <= 0) {
return 0;
}
for(;;) {
if(nLen <= 0) {
return 0;
}
if(zP[0] == 0 || zQ[0] == 0 || zP[0] != zQ[0]) {
break;
}
zP++;
zQ++;
nLen--;
if(nLen <= 0) {
return 0;
}
if(zP[0] == 0 || zQ[0] == 0 || zP[0] != zQ[0]) {
break;
}
zP++;
zQ++;
nLen--;
if(nLen <= 0) {
return 0;
}
if(zP[0] == 0 || zQ[0] == 0 || zP[0] != zQ[0]) {
break;
}
zP++;
zQ++;
nLen--;
if(nLen <= 0) {
return 0;
}
if(zP[0] == 0 || zQ[0] == 0 || zP[0] != zQ[0]) {
break;
}
zP++;
zQ++;
nLen--;
}
return (sxi32)(zP[0] - zQ[0]);
}
#endif
PH7_PRIVATE sxi32 SyStrnicmp(const char *zLeft, const char *zRight, sxu32 SLen) {
register unsigned char *p = (unsigned char *)zLeft;
register unsigned char *q = (unsigned char *)zRight;
if(SX_EMPTY_STR(p) || SX_EMPTY_STR(q)) {
return SX_EMPTY_STR(p) ? SX_EMPTY_STR(q) ? 0 : -1 : 1;
}
for(;;) {
if(!SLen) {
return 0;
}
if(!*p || !*q || SyCharToLower(*p) != SyCharToLower(*q)) {
break;
}
p++;
q++;
--SLen;
if(!SLen) {
return 0;
}
if(!*p || !*q || SyCharToLower(*p) != SyCharToLower(*q)) {
break;
}
p++;
q++;
--SLen;
if(!SLen) {
return 0;
}
if(!*p || !*q || SyCharToLower(*p) != SyCharToLower(*q)) {
break;
}
p++;
q++;
--SLen;
if(!SLen) {
return 0;
}
if(!*p || !*q || SyCharToLower(*p) != SyCharToLower(*q)) {
break;
}
p++;
q++;
--SLen;
}
return (sxi32)(SyCharToLower(p[0]) - SyCharToLower(q[0]));
}
PH7_PRIVATE sxi32 SyStrnmicmp(const void *pLeft, const void *pRight, sxu32 SLen) {
return SyStrnicmp((const char *)pLeft, (const char *)pRight, SLen);
}
static sxu32 Systrcpy(char *zDest, sxu32 nDestLen, const char *zSrc, sxu32 nLen) {
unsigned char *zBuf = (unsigned char *)zDest;
unsigned char *zIn = (unsigned char *)zSrc;
unsigned char *zEnd;
#if defined(UNTRUST)
if(zSrc == (const char *)zDest) {
return 0;
}
#endif
if(nLen <= 0) {
nLen = SyStrlen(zSrc);
}
zEnd = &zBuf[nDestLen - 1]; /* reserve a room for the null terminator */
for(;;) {
if(zBuf >= zEnd || nLen == 0) {
break;
}
zBuf[0] = zIn[0];
zIn++;
zBuf++;
nLen--;
if(zBuf >= zEnd || nLen == 0) {
break;
}
zBuf[0] = zIn[0];
zIn++;
zBuf++;
nLen--;
if(zBuf >= zEnd || nLen == 0) {
break;
}
zBuf[0] = zIn[0];
zIn++;
zBuf++;
nLen--;
if(zBuf >= zEnd || nLen == 0) {
break;
}
zBuf[0] = zIn[0];
zIn++;
zBuf++;
nLen--;
}
zBuf[0] = 0;
return (sxu32)(zBuf - (unsigned char *)zDest);
}
/* SyRunTimeApi:sxmem.c */
PH7_PRIVATE void SyZero(void *pSrc, sxu32 nSize) {
register unsigned char *zSrc = (unsigned char *)pSrc;
unsigned char *zEnd;
#if defined(UNTRUST)
if(zSrc == 0 || nSize <= 0) {
return ;
}
#endif
zEnd = &zSrc[nSize];
for(;;) {
if(zSrc >= zEnd) {
break;
}
zSrc[0] = 0;
zSrc++;
if(zSrc >= zEnd) {
break;
}
zSrc[0] = 0;
zSrc++;
if(zSrc >= zEnd) {
break;
}
zSrc[0] = 0;
zSrc++;
if(zSrc >= zEnd) {
break;
}
zSrc[0] = 0;
zSrc++;
}
}
PH7_PRIVATE sxi32 SyMemcmp(const void *pB1, const void *pB2, sxu32 nSize) {
sxi32 rc;
if(nSize <= 0) {
return 0;
}
if(pB1 == 0 || pB2 == 0) {
return pB1 != 0 ? 1 : (pB2 == 0 ? 0 : -1);
}
SX_MACRO_FAST_CMP(pB1, pB2, nSize, rc);
return rc;
}
PH7_PRIVATE sxu32 SyMemcpy(const void *pSrc, void *pDest, sxu32 nLen) {
#if defined(UNTRUST)
if(pSrc == 0 || pDest == 0) {
return 0;
}
#endif
if(pSrc == (const void *)pDest) {
return nLen;
}
SX_MACRO_FAST_MEMCPY(pSrc, pDest, nLen);
return nLen;
}
static void *MemOSAlloc(sxu32 nBytes) {
sxu32 *pChunk;
pChunk = (sxu32 *)SyOSHeapAlloc(nBytes + sizeof(sxu32));
if(pChunk == 0) {
return 0;
}
pChunk[0] = nBytes;
return (void *)&pChunk[1];
}
static void *MemOSRealloc(void *pOld, sxu32 nBytes) {
sxu32 *pOldChunk;
sxu32 *pChunk;
pOldChunk = (sxu32 *)(((char *)pOld) - sizeof(sxu32));
if(pOldChunk[0] >= nBytes) {
return pOld;
}
pChunk = (sxu32 *)SyOSHeapRealloc(pOldChunk, nBytes + sizeof(sxu32));
if(pChunk == 0) {
return 0;
}
pChunk[0] = nBytes;
return (void *)&pChunk[1];
}
static void MemOSFree(void *pBlock) {
void *pChunk;
pChunk = (void *)(((char *)pBlock) - sizeof(sxu32));
SyOSHeapFree(pChunk);
}
static sxu32 MemOSChunkSize(void *pBlock) {
sxu32 *pChunk;
pChunk = (sxu32 *)(((char *)pBlock) - sizeof(sxu32));
return pChunk[0];
}
/* Export OS allocation methods */
static const SyMemMethods sOSAllocMethods = {
MemOSAlloc,
MemOSRealloc,
MemOSFree,
MemOSChunkSize,
0,
0,
0
};
static void *MemBackendAlloc(SyMemBackend *pBackend, sxu32 nByte) {
SyMemBlock *pBlock;
sxi32 nRetry = 0;
/* Append an extra block so we can tracks allocated chunks and avoid memory
* leaks.
*/
nByte += sizeof(SyMemBlock);
for(;;) {
pBlock = (SyMemBlock *)pBackend->pMethods->xAlloc(nByte);
if(pBlock != 0 || pBackend->xMemError == 0 || nRetry > SXMEM_BACKEND_RETRY
|| SXERR_RETRY != pBackend->xMemError(pBackend->pUserData)) {
break;
}
nRetry++;
}
if(pBlock == 0) {
return 0;
}
pBlock->pNext = pBlock->pPrev = 0;
/* Link to the list of already tracked blocks */
MACRO_LD_PUSH(pBackend->pBlocks, pBlock);
#if defined(UNTRUST)
pBlock->nGuard = SXMEM_BACKEND_MAGIC;
#endif
pBackend->nBlock++;
return (void *)&pBlock[1];
}
PH7_PRIVATE void *SyMemBackendAlloc(SyMemBackend *pBackend, sxu32 nByte) {
void *pChunk;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return 0;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
pChunk = MemBackendAlloc(&(*pBackend), nByte);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return pChunk;
}
static void *MemBackendRealloc(SyMemBackend *pBackend, void *pOld, sxu32 nByte) {
SyMemBlock *pBlock, *pNew, *pPrev, *pNext;
sxu32 nRetry = 0;
if(pOld == 0) {
return MemBackendAlloc(&(*pBackend), nByte);
}
pBlock = (SyMemBlock *)(((char *)pOld) - sizeof(SyMemBlock));
#if defined(UNTRUST)
if(pBlock->nGuard != SXMEM_BACKEND_MAGIC) {
return 0;
}
#endif
nByte += sizeof(SyMemBlock);
pPrev = pBlock->pPrev;
pNext = pBlock->pNext;
for(;;) {
pNew = (SyMemBlock *)pBackend->pMethods->xRealloc(pBlock, nByte);
if(pNew != 0 || pBackend->xMemError == 0 || nRetry > SXMEM_BACKEND_RETRY ||
SXERR_RETRY != pBackend->xMemError(pBackend->pUserData)) {
break;
}
nRetry++;
}
if(pNew == 0) {
return 0;
}
if(pNew != pBlock) {
if(pPrev == 0) {
pBackend->pBlocks = pNew;
} else {
pPrev->pNext = pNew;
}
if(pNext) {
pNext->pPrev = pNew;
}
#if defined(UNTRUST)
pNew->nGuard = SXMEM_BACKEND_MAGIC;
#endif
}
return (void *)&pNew[1];
}
PH7_PRIVATE void *SyMemBackendRealloc(SyMemBackend *pBackend, void *pOld, sxu32 nByte) {
void *pChunk;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return 0;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
pChunk = MemBackendRealloc(&(*pBackend), pOld, nByte);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return pChunk;
}
static sxi32 MemBackendFree(SyMemBackend *pBackend, void *pChunk) {
SyMemBlock *pBlock;
pBlock = (SyMemBlock *)(((char *)pChunk) - sizeof(SyMemBlock));
#if defined(UNTRUST)
if(pBlock->nGuard != SXMEM_BACKEND_MAGIC) {
return SXERR_CORRUPT;
}
#endif
/* Unlink from the list of active blocks */
if(pBackend->nBlock > 0) {
/* Release the block */
#if defined(UNTRUST)
/* Mark as stale block */
pBlock->nGuard = 0x635B;
#endif
MACRO_LD_REMOVE(pBackend->pBlocks, pBlock);
pBackend->nBlock--;
pBackend->pMethods->xFree(pBlock);
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendFree(SyMemBackend *pBackend, void *pChunk) {
sxi32 rc;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return SXERR_CORRUPT;
}
#endif
if(pChunk == 0) {
return SXRET_OK;
}
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
rc = MemBackendFree(&(*pBackend), pChunk);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return rc;
}
#if defined(PH7_ENABLE_THREADS)
PH7_PRIVATE sxi32 SyMemBackendMakeThreadSafe(SyMemBackend *pBackend, const SyMutexMethods *pMethods) {
SyMutex *pMutex;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend) || pMethods == 0 || pMethods->xNew == 0) {
return SXERR_CORRUPT;
}
#endif
pMutex = pMethods->xNew(SXMUTEX_TYPE_FAST);
if(pMutex == 0) {
return SXERR_OS;
}
/* Attach the mutex to the memory backend */
pBackend->pMutex = pMutex;
pBackend->pMutexMethods = pMethods;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendDisbaleMutexing(SyMemBackend *pBackend) {
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return SXERR_CORRUPT;
}
#endif
if(pBackend->pMutex == 0) {
/* There is no mutex subsystem at all */
return SXRET_OK;
}
SyMutexRelease(pBackend->pMutexMethods, pBackend->pMutex);
pBackend->pMutexMethods = 0;
pBackend->pMutex = 0;
return SXRET_OK;
}
#endif
/*
* Memory pool allocator
*/
#define SXMEM_POOL_MAGIC 0xDEAD
#define SXMEM_POOL_MAXALLOC (1<<(SXMEM_POOL_NBUCKETS+SXMEM_POOL_INCR))
#define SXMEM_POOL_MINALLOC (1<<(SXMEM_POOL_INCR))
static sxi32 MemPoolBucketAlloc(SyMemBackend *pBackend, sxu32 nBucket) {
char *zBucket, *zBucketEnd;
SyMemHeader *pHeader;
sxu32 nBucketSize;
/* Allocate one big block first */
zBucket = (char *)MemBackendAlloc(&(*pBackend), SXMEM_POOL_MAXALLOC);
if(zBucket == 0) {
return SXERR_MEM;
}
zBucketEnd = &zBucket[SXMEM_POOL_MAXALLOC];
/* Divide the big block into mini bucket pool */
nBucketSize = 1 << (nBucket + SXMEM_POOL_INCR);
pBackend->apPool[nBucket] = pHeader = (SyMemHeader *)zBucket;
for(;;) {
if(&zBucket[nBucketSize] >= zBucketEnd) {
break;
}
pHeader->pNext = (SyMemHeader *)&zBucket[nBucketSize];
/* Advance the cursor to the next available chunk */
pHeader = pHeader->pNext;
zBucket += nBucketSize;
}
pHeader->pNext = 0;
return SXRET_OK;
}
static void *MemBackendPoolAlloc(SyMemBackend *pBackend, sxu32 nByte) {
SyMemHeader *pBucket, *pNext;
sxu32 nBucketSize;
sxu32 nBucket;
if(nByte + sizeof(SyMemHeader) >= SXMEM_POOL_MAXALLOC) {
/* Allocate a big chunk directly */
pBucket = (SyMemHeader *)MemBackendAlloc(&(*pBackend), nByte + sizeof(SyMemHeader));
if(pBucket == 0) {
return 0;
}
/* Record as big block */
pBucket->nBucket = (sxu32)(SXMEM_POOL_MAGIC << 16) | SXU16_HIGH;
return (void *)(pBucket + 1);
}
/* Locate the appropriate bucket */
nBucket = 0;
nBucketSize = SXMEM_POOL_MINALLOC;
while(nByte + sizeof(SyMemHeader) > nBucketSize) {
nBucketSize <<= 1;
nBucket++;
}
pBucket = pBackend->apPool[nBucket];
if(pBucket == 0) {
sxi32 rc;
rc = MemPoolBucketAlloc(&(*pBackend), nBucket);
if(rc != SXRET_OK) {
return 0;
}
pBucket = pBackend->apPool[nBucket];
}
/* Remove from the free list */
pNext = pBucket->pNext;
pBackend->apPool[nBucket] = pNext;
/* Record bucket&magic number */
pBucket->nBucket = (SXMEM_POOL_MAGIC << 16) | nBucket;
return (void *)&pBucket[1];
}
PH7_PRIVATE void *SyMemBackendPoolAlloc(SyMemBackend *pBackend, sxu32 nByte) {
void *pChunk;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return 0;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
pChunk = MemBackendPoolAlloc(&(*pBackend), nByte);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return pChunk;
}
static sxi32 MemBackendPoolFree(SyMemBackend *pBackend, void *pChunk) {
SyMemHeader *pHeader;
sxu32 nBucket;
/* Get the corresponding bucket */
pHeader = (SyMemHeader *)(((char *)pChunk) - sizeof(SyMemHeader));
/* Sanity check to avoid misuse */
if((pHeader->nBucket >> 16) != SXMEM_POOL_MAGIC) {
return SXERR_CORRUPT;
}
nBucket = pHeader->nBucket & 0xFFFF;
if(nBucket == SXU16_HIGH) {
/* Free the big block */
MemBackendFree(&(*pBackend), pHeader);
} else {
/* Return to the free list */
pHeader->pNext = pBackend->apPool[nBucket & 0x0f];
pBackend->apPool[nBucket & 0x0f] = pHeader;
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendPoolFree(SyMemBackend *pBackend, void *pChunk) {
sxi32 rc;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend) || pChunk == 0) {
return SXERR_CORRUPT;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
rc = MemBackendPoolFree(&(*pBackend), pChunk);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return rc;
}
#if 0
static void *MemBackendPoolRealloc(SyMemBackend *pBackend, void *pOld, sxu32 nByte) {
sxu32 nBucket, nBucketSize;
SyMemHeader *pHeader;
void *pNew;
if(pOld == 0) {
/* Allocate a new pool */
pNew = MemBackendPoolAlloc(&(*pBackend), nByte);
return pNew;
}
/* Get the corresponding bucket */
pHeader = (SyMemHeader *)(((char *)pOld) - sizeof(SyMemHeader));
/* Sanity check to avoid misuse */
if((pHeader->nBucket >> 16) != SXMEM_POOL_MAGIC) {
return 0;
}
nBucket = pHeader->nBucket & 0xFFFF;
if(nBucket == SXU16_HIGH) {
/* Big block */
return MemBackendRealloc(&(*pBackend), pHeader, nByte);
}
nBucketSize = 1 << (nBucket + SXMEM_POOL_INCR);
if(nBucketSize >= nByte + sizeof(SyMemHeader)) {
/* The old bucket can honor the requested size */
return pOld;
}
/* Allocate a new pool */
pNew = MemBackendPoolAlloc(&(*pBackend), nByte);
if(pNew == 0) {
return 0;
}
/* Copy the old data into the new block */
SyMemcpy(pOld, pNew, nBucketSize);
/* Free the stale block */
MemBackendPoolFree(&(*pBackend), pOld);
return pNew;
}
PH7_PRIVATE void *SyMemBackendPoolRealloc(SyMemBackend *pBackend, void *pOld, sxu32 nByte) {
void *pChunk;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return 0;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
pChunk = MemBackendPoolRealloc(&(*pBackend), pOld, nByte);
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
}
return pChunk;
}
#endif
PH7_PRIVATE sxi32 SyMemBackendInit(SyMemBackend *pBackend, ProcMemError xMemErr, void *pUserData) {
#if defined(UNTRUST)
if(pBackend == 0) {
return SXERR_EMPTY;
}
#endif
/* Zero the allocator first */
SyZero(&(*pBackend), sizeof(SyMemBackend));
pBackend->xMemError = xMemErr;
pBackend->pUserData = pUserData;
/* Switch to the OS memory allocator */
pBackend->pMethods = &sOSAllocMethods;
if(pBackend->pMethods->xInit) {
/* Initialize the backend */
if(SXRET_OK != pBackend->pMethods->xInit(pBackend->pMethods->pUserData)) {
return SXERR_ABORT;
}
}
#if defined(UNTRUST)
pBackend->nMagic = SXMEM_BACKEND_MAGIC;
#endif
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendInitFromOthers(SyMemBackend *pBackend, const SyMemMethods *pMethods, ProcMemError xMemErr, void *pUserData) {
#if defined(UNTRUST)
if(pBackend == 0 || pMethods == 0) {
return SXERR_EMPTY;
}
#endif
if(pMethods->xAlloc == 0 || pMethods->xRealloc == 0 || pMethods->xFree == 0 || pMethods->xChunkSize == 0) {
/* mandatory methods are missing */
return SXERR_INVALID;
}
/* Zero the allocator first */
SyZero(&(*pBackend), sizeof(SyMemBackend));
pBackend->xMemError = xMemErr;
pBackend->pUserData = pUserData;
/* Switch to the host application memory allocator */
pBackend->pMethods = pMethods;
if(pBackend->pMethods->xInit) {
/* Initialize the backend */
if(SXRET_OK != pBackend->pMethods->xInit(pBackend->pMethods->pUserData)) {
return SXERR_ABORT;
}
}
#if defined(UNTRUST)
pBackend->nMagic = SXMEM_BACKEND_MAGIC;
#endif
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendInitFromParent(SyMemBackend *pBackend, SyMemBackend *pParent) {
sxu8 bInheritMutex;
#if defined(UNTRUST)
if(pBackend == 0 || SXMEM_BACKEND_CORRUPT(pParent)) {
return SXERR_CORRUPT;
}
#endif
/* Zero the allocator first */
SyZero(&(*pBackend), sizeof(SyMemBackend));
pBackend->pMethods = pParent->pMethods;
pBackend->xMemError = pParent->xMemError;
pBackend->pUserData = pParent->pUserData;
bInheritMutex = pParent->pMutexMethods ? TRUE : FALSE;
if(bInheritMutex) {
pBackend->pMutexMethods = pParent->pMutexMethods;
/* Create a private mutex */
pBackend->pMutex = pBackend->pMutexMethods->xNew(SXMUTEX_TYPE_FAST);
if(pBackend->pMutex == 0) {
return SXERR_OS;
}
}
#if defined(UNTRUST)
pBackend->nMagic = SXMEM_BACKEND_MAGIC;
#endif
return SXRET_OK;
}
static sxi32 MemBackendRelease(SyMemBackend *pBackend) {
SyMemBlock *pBlock, *pNext;
pBlock = pBackend->pBlocks;
for(;;) {
if(pBackend->nBlock == 0) {
break;
}
pNext = pBlock->pNext;
pBackend->pMethods->xFree(pBlock);
pBlock = pNext;
pBackend->nBlock--;
/* LOOP ONE */
if(pBackend->nBlock == 0) {
break;
}
pNext = pBlock->pNext;
pBackend->pMethods->xFree(pBlock);
pBlock = pNext;
pBackend->nBlock--;
/* LOOP TWO */
if(pBackend->nBlock == 0) {
break;
}
pNext = pBlock->pNext;
pBackend->pMethods->xFree(pBlock);
pBlock = pNext;
pBackend->nBlock--;
/* LOOP THREE */
if(pBackend->nBlock == 0) {
break;
}
pNext = pBlock->pNext;
pBackend->pMethods->xFree(pBlock);
pBlock = pNext;
pBackend->nBlock--;
/* LOOP FOUR */
}
if(pBackend->pMethods->xRelease) {
pBackend->pMethods->xRelease(pBackend->pMethods->pUserData);
}
pBackend->pMethods = 0;
pBackend->pBlocks = 0;
#if defined(UNTRUST)
pBackend->nMagic = 0x2626;
#endif
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMemBackendRelease(SyMemBackend *pBackend) {
sxi32 rc;
#if defined(UNTRUST)
if(SXMEM_BACKEND_CORRUPT(pBackend)) {
return SXERR_INVALID;
}
#endif
if(pBackend->pMutexMethods) {
SyMutexEnter(pBackend->pMutexMethods, pBackend->pMutex);
}
rc = MemBackendRelease(&(*pBackend));
if(pBackend->pMutexMethods) {
SyMutexLeave(pBackend->pMutexMethods, pBackend->pMutex);
SyMutexRelease(pBackend->pMutexMethods, pBackend->pMutex);
}
return SXRET_OK;
}
PH7_PRIVATE void *SyMemBackendDup(SyMemBackend *pBackend, const void *pSrc, sxu32 nSize) {
void *pNew;
#if defined(UNTRUST)
if(pSrc == 0 || nSize <= 0) {
return 0;
}
#endif
pNew = SyMemBackendAlloc(&(*pBackend), nSize);
if(pNew) {
SyMemcpy(pSrc, pNew, nSize);
}
return pNew;
}
PH7_PRIVATE char *SyMemBackendStrDup(SyMemBackend *pBackend, const char *zSrc, sxu32 nSize) {
char *zDest;
zDest = (char *)SyMemBackendAlloc(&(*pBackend), nSize + 1);
if(zDest) {
Systrcpy(zDest, nSize + 1, zSrc, nSize);
}
return zDest;
}
PH7_PRIVATE sxi32 SyBlobInitFromBuf(SyBlob *pBlob, void *pBuffer, sxu32 nSize) {
#if defined(UNTRUST)
if(pBlob == 0 || pBuffer == 0 || nSize < 1) {
return SXERR_EMPTY;
}
#endif
pBlob->pBlob = pBuffer;
pBlob->mByte = nSize;
pBlob->nByte = 0;
pBlob->pAllocator = 0;
pBlob->nFlags = SXBLOB_LOCKED | SXBLOB_STATIC;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBlobInit(SyBlob *pBlob, SyMemBackend *pAllocator) {
#if defined(UNTRUST)
if(pBlob == 0) {
return SXERR_EMPTY;
}
#endif
pBlob->pBlob = 0;
pBlob->mByte = pBlob->nByte = 0;
pBlob->pAllocator = &(*pAllocator);
pBlob->nFlags = 0;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBlobReadOnly(SyBlob *pBlob, const void *pData, sxu32 nByte) {
#if defined(UNTRUST)
if(pBlob == 0) {
return SXERR_EMPTY;
}
#endif
pBlob->pBlob = (void *)pData;
pBlob->nByte = nByte;
pBlob->mByte = 0;
pBlob->nFlags |= SXBLOB_RDONLY;
return SXRET_OK;
}
#ifndef SXBLOB_MIN_GROWTH
#define SXBLOB_MIN_GROWTH 16
#endif
static sxi32 BlobPrepareGrow(SyBlob *pBlob, sxu32 *pByte) {
sxu32 nByte;
void *pNew;
nByte = *pByte;
if(pBlob->nFlags & (SXBLOB_LOCKED | SXBLOB_STATIC)) {
if(SyBlobFreeSpace(pBlob) < nByte) {
*pByte = SyBlobFreeSpace(pBlob);
if((*pByte) == 0) {
return SXERR_SHORT;
}
}
return SXRET_OK;
}
if(pBlob->nFlags & SXBLOB_RDONLY) {
/* Make a copy of the read-only item */
if(pBlob->nByte > 0) {
pNew = SyMemBackendDup(pBlob->pAllocator, pBlob->pBlob, pBlob->nByte);
if(pNew == 0) {
return SXERR_MEM;
}
pBlob->pBlob = pNew;
pBlob->mByte = pBlob->nByte;
} else {
pBlob->pBlob = 0;
pBlob->mByte = 0;
}
/* Remove the read-only flag */
pBlob->nFlags &= ~SXBLOB_RDONLY;
}
if(SyBlobFreeSpace(pBlob) >= nByte) {
return SXRET_OK;
}
if(pBlob->mByte > 0) {
nByte = nByte + pBlob->mByte * 2 + SXBLOB_MIN_GROWTH;
} else if(nByte < SXBLOB_MIN_GROWTH) {
nByte = SXBLOB_MIN_GROWTH;
}
pNew = SyMemBackendRealloc(pBlob->pAllocator, pBlob->pBlob, nByte);
if(pNew == 0) {
return SXERR_MEM;
}
pBlob->pBlob = pNew;
pBlob->mByte = nByte;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBlobAppend(SyBlob *pBlob, const void *pData, sxu32 nSize) {
sxu8 *zBlob;
sxi32 rc;
if(nSize < 1) {
return SXRET_OK;
}
rc = BlobPrepareGrow(&(*pBlob), &nSize);
if(SXRET_OK != rc) {
return rc;
}
if(pData) {
zBlob = (sxu8 *)pBlob->pBlob ;
zBlob = &zBlob[pBlob->nByte];
pBlob->nByte += nSize;
SX_MACRO_FAST_MEMCPY(pData, zBlob, nSize);
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBlobNullAppend(SyBlob *pBlob) {
sxi32 rc;
sxu32 n;
n = pBlob->nByte;
rc = SyBlobAppend(&(*pBlob), (const void *)"\0", sizeof(char));
if(rc == SXRET_OK) {
pBlob->nByte = n;
}
return rc;
}
PH7_PRIVATE sxi32 SyBlobDup(SyBlob *pSrc, SyBlob *pDest) {
sxi32 rc = SXRET_OK;
#ifdef UNTRUST
if(pSrc == 0 || pDest == 0) {
return SXERR_EMPTY;
}
#endif
if(pSrc->nByte > 0) {
rc = SyBlobAppend(&(*pDest), pSrc->pBlob, pSrc->nByte);
}
return rc;
}
PH7_PRIVATE sxi32 SyBlobCmp(SyBlob *pLeft, SyBlob *pRight) {
sxi32 rc;
#ifdef UNTRUST
if(pLeft == 0 || pRight == 0) {
return pLeft ? 1 : -1;
}
#endif
if(pLeft->nByte != pRight->nByte) {
/* Length differ */
return pLeft->nByte - pRight->nByte;
}
if(pLeft->nByte == 0) {
return 0;
}
/* Perform a standard memcmp() operation */
rc = SyMemcmp(pLeft->pBlob, pRight->pBlob, pLeft->nByte);
return rc;
}
PH7_PRIVATE sxi32 SyBlobReset(SyBlob *pBlob) {
pBlob->nByte = 0;
if(pBlob->nFlags & SXBLOB_RDONLY) {
pBlob->pBlob = 0;
pBlob->mByte = 0;
pBlob->nFlags &= ~SXBLOB_RDONLY;
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBlobRelease(SyBlob *pBlob) {
if((pBlob->nFlags & (SXBLOB_STATIC | SXBLOB_RDONLY)) == 0 && pBlob->mByte > 0) {
SyMemBackendFree(pBlob->pAllocator, pBlob->pBlob);
}
pBlob->pBlob = 0;
pBlob->nByte = pBlob->mByte = 0;
pBlob->nFlags = 0;
return SXRET_OK;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE sxi32 SyBlobSearch(const void *pBlob, sxu32 nLen, const void *pPattern, sxu32 pLen, sxu32 *pOfft) {
const char *zIn = (const char *)pBlob;
const char *zEnd;
sxi32 rc;
if(pLen > nLen) {
return SXERR_NOTFOUND;
}
zEnd = &zIn[nLen - pLen];
for(;;) {
if(zIn > zEnd) {
break;
}
SX_MACRO_FAST_CMP(zIn, pPattern, pLen, rc);
if(rc == 0) {
if(pOfft) {
*pOfft = (sxu32)(zIn - (const char *)pBlob);
}
return SXRET_OK;
}
zIn++;
if(zIn > zEnd) {
break;
}
SX_MACRO_FAST_CMP(zIn, pPattern, pLen, rc);
if(rc == 0) {
if(pOfft) {
*pOfft = (sxu32)(zIn - (const char *)pBlob);
}
return SXRET_OK;
}
zIn++;
if(zIn > zEnd) {
break;
}
SX_MACRO_FAST_CMP(zIn, pPattern, pLen, rc);
if(rc == 0) {
if(pOfft) {
*pOfft = (sxu32)(zIn - (const char *)pBlob);
}
return SXRET_OK;
}
zIn++;
if(zIn > zEnd) {
break;
}
SX_MACRO_FAST_CMP(zIn, pPattern, pLen, rc);
if(rc == 0) {
if(pOfft) {
*pOfft = (sxu32)(zIn - (const char *)pBlob);
}
return SXRET_OK;
}
zIn++;
}
return SXERR_NOTFOUND;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
/* SyRunTimeApi:sxds.c */
PH7_PRIVATE sxi32 SySetInit(SySet *pSet, SyMemBackend *pAllocator, sxu32 ElemSize) {
pSet->nSize = 0 ;
pSet->nUsed = 0;
pSet->nCursor = 0;
pSet->eSize = ElemSize;
pSet->pAllocator = pAllocator;
pSet->pBase = 0;
pSet->pUserData = 0;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetPut(SySet *pSet, const void *pItem) {
unsigned char *zbase;
if(pSet->nUsed >= pSet->nSize) {
void *pNew;
if(pSet->pAllocator == 0) {
return SXERR_LOCKED;
}
if(pSet->nSize <= 0) {
pSet->nSize = 4;
}
pNew = SyMemBackendRealloc(pSet->pAllocator, pSet->pBase, pSet->eSize * pSet->nSize * 2);
if(pNew == 0) {
return SXERR_MEM;
}
pSet->pBase = pNew;
pSet->nSize <<= 1;
}
zbase = (unsigned char *)pSet->pBase;
SX_MACRO_FAST_MEMCPY(pItem, &zbase[pSet->nUsed * pSet->eSize], pSet->eSize);
pSet->nUsed++;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetAlloc(SySet *pSet, sxi32 nItem) {
if(pSet->nSize > 0) {
return SXERR_LOCKED;
}
if(nItem < 8) {
nItem = 8;
}
pSet->pBase = SyMemBackendAlloc(pSet->pAllocator, pSet->eSize * nItem);
if(pSet->pBase == 0) {
return SXERR_MEM;
}
pSet->nSize = nItem;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetReset(SySet *pSet) {
pSet->nUsed = 0;
pSet->nCursor = 0;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetResetCursor(SySet *pSet) {
pSet->nCursor = 0;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetGetNextEntry(SySet *pSet, void **ppEntry) {
register unsigned char *zSrc;
if(pSet->nCursor >= pSet->nUsed) {
/* Reset cursor */
pSet->nCursor = 0;
return SXERR_EOF;
}
zSrc = (unsigned char *)SySetBasePtr(pSet);
if(ppEntry) {
*ppEntry = (void *)&zSrc[pSet->nCursor * pSet->eSize];
}
pSet->nCursor++;
return SXRET_OK;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE void *SySetPeekCurrentEntry(SySet *pSet) {
register unsigned char *zSrc;
if(pSet->nCursor >= pSet->nUsed) {
return 0;
}
zSrc = (unsigned char *)SySetBasePtr(pSet);
return (void *)&zSrc[pSet->nCursor * pSet->eSize];
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
PH7_PRIVATE sxi32 SySetTruncate(SySet *pSet, sxu32 nNewSize) {
if(nNewSize < pSet->nUsed) {
pSet->nUsed = nNewSize;
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SySetRelease(SySet *pSet) {
sxi32 rc = SXRET_OK;
if(pSet->pAllocator && pSet->pBase) {
rc = SyMemBackendFree(pSet->pAllocator, pSet->pBase);
}
pSet->pBase = 0;
pSet->nUsed = 0;
pSet->nCursor = 0;
return rc;
}
PH7_PRIVATE void *SySetPeek(SySet *pSet) {
const char *zBase;
if(pSet->nUsed <= 0) {
return 0;
}
zBase = (const char *)pSet->pBase;
return (void *)&zBase[(pSet->nUsed - 1) * pSet->eSize];
}
PH7_PRIVATE void *SySetPop(SySet *pSet) {
const char *zBase;
void *pData;
if(pSet->nUsed <= 0) {
return 0;
}
zBase = (const char *)pSet->pBase;
pSet->nUsed--;
pData = (void *)&zBase[pSet->nUsed * pSet->eSize];
return pData;
}
PH7_PRIVATE void *SySetAt(SySet *pSet, sxu32 nIdx) {
const char *zBase;
if(nIdx >= pSet->nUsed) {
/* Out of range */
return 0;
}
zBase = (const char *)pSet->pBase;
return (void *)&zBase[nIdx * pSet->eSize];
}
/* Private hash entry */
struct SyHashEntry_Pr {
const void *pKey; /* Hash key */
sxu32 nKeyLen; /* Key length */
void *pUserData; /* User private data */
/* Private fields */
sxu32 nHash;
SyHash *pHash;
SyHashEntry_Pr *pNext, *pPrev; /* Next and previous entry in the list */
SyHashEntry_Pr *pNextCollide, *pPrevCollide; /* Collision list */
};
#define INVALID_HASH(H) ((H)->apBucket == 0)
/* Forward declarartion */
static sxu32 SyBinHash(const void *pSrc, sxu32 nLen);
PH7_PRIVATE sxi32 SyHashInit(SyHash *pHash, SyMemBackend *pAllocator, ProcHash xHash, ProcCmp xCmp) {
SyHashEntry_Pr **apNew;
#if defined(UNTRUST)
if(pHash == 0) {
return SXERR_EMPTY;
}
#endif
/* Allocate a new table */
apNew = (SyHashEntry_Pr **)SyMemBackendAlloc(&(*pAllocator), sizeof(SyHashEntry_Pr *) * SXHASH_BUCKET_SIZE);
if(apNew == 0) {
return SXERR_MEM;
}
SyZero((void *)apNew, sizeof(SyHashEntry_Pr *) * SXHASH_BUCKET_SIZE);
pHash->pAllocator = &(*pAllocator);
pHash->xHash = xHash ? xHash : SyBinHash;
pHash->xCmp = xCmp ? xCmp : SyMemcmp;
pHash->pCurrent = pHash->pList = 0;
pHash->nEntry = 0;
pHash->apBucket = apNew;
pHash->nBucketSize = SXHASH_BUCKET_SIZE;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyHashRelease(SyHash *pHash) {
SyHashEntry_Pr *pEntry, *pNext;
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return SXERR_EMPTY;
}
#endif
pEntry = pHash->pList;
for(;;) {
if(pHash->nEntry == 0) {
break;
}
pNext = pEntry->pNext;
SyMemBackendPoolFree(pHash->pAllocator, pEntry);
pEntry = pNext;
pHash->nEntry--;
}
if(pHash->apBucket) {
SyMemBackendFree(pHash->pAllocator, (void *)pHash->apBucket);
}
pHash->apBucket = 0;
pHash->nBucketSize = 0;
pHash->pAllocator = 0;
return SXRET_OK;
}
static SyHashEntry_Pr *HashGetEntry(SyHash *pHash, const void *pKey, sxu32 nKeyLen) {
SyHashEntry_Pr *pEntry;
sxu32 nHash;
nHash = pHash->xHash(pKey, nKeyLen);
pEntry = pHash->apBucket[nHash & (pHash->nBucketSize - 1)];
for(;;) {
if(pEntry == 0) {
break;
}
if(pEntry->nHash == nHash && pEntry->nKeyLen == nKeyLen &&
pHash->xCmp(pEntry->pKey, pKey, nKeyLen) == 0) {
return pEntry;
}
pEntry = pEntry->pNextCollide;
}
/* Entry not found */
return 0;
}
PH7_PRIVATE SyHashEntry *SyHashGet(SyHash *pHash, const void *pKey, sxu32 nKeyLen) {
SyHashEntry_Pr *pEntry;
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return 0;
}
#endif
if(pHash->nEntry < 1 || nKeyLen < 1) {
/* Don't bother hashing,return immediately */
return 0;
}
pEntry = HashGetEntry(&(*pHash), pKey, nKeyLen);
if(pEntry == 0) {
return 0;
}
return (SyHashEntry *)pEntry;
}
static sxi32 HashDeleteEntry(SyHash *pHash, SyHashEntry_Pr *pEntry, void **ppUserData) {
sxi32 rc;
if(pEntry->pPrevCollide == 0) {
pHash->apBucket[pEntry->nHash & (pHash->nBucketSize - 1)] = pEntry->pNextCollide;
} else {
pEntry->pPrevCollide->pNextCollide = pEntry->pNextCollide;
}
if(pEntry->pNextCollide) {
pEntry->pNextCollide->pPrevCollide = pEntry->pPrevCollide;
}
MACRO_LD_REMOVE(pHash->pList, pEntry);
pHash->nEntry--;
if(ppUserData) {
/* Write a pointer to the user data */
*ppUserData = pEntry->pUserData;
}
/* Release the entry */
rc = SyMemBackendPoolFree(pHash->pAllocator, pEntry);
return rc;
}
PH7_PRIVATE sxi32 SyHashDeleteEntry(SyHash *pHash, const void *pKey, sxu32 nKeyLen, void **ppUserData) {
SyHashEntry_Pr *pEntry;
sxi32 rc;
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return SXERR_CORRUPT;
}
#endif
pEntry = HashGetEntry(&(*pHash), pKey, nKeyLen);
if(pEntry == 0) {
return SXERR_NOTFOUND;
}
rc = HashDeleteEntry(&(*pHash), pEntry, ppUserData);
return rc;
}
PH7_PRIVATE sxi32 SyHashDeleteEntry2(SyHashEntry *pEntry) {
SyHashEntry_Pr *pPtr = (SyHashEntry_Pr *)pEntry;
sxi32 rc;
#if defined(UNTRUST)
if(pPtr == 0 || INVALID_HASH(pPtr->pHash)) {
return SXERR_CORRUPT;
}
#endif
rc = HashDeleteEntry(pPtr->pHash, pPtr, 0);
return rc;
}
PH7_PRIVATE sxi32 SyHashResetLoopCursor(SyHash *pHash) {
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return SXERR_CORRUPT;
}
#endif
pHash->pCurrent = pHash->pList;
return SXRET_OK;
}
PH7_PRIVATE SyHashEntry *SyHashGetNextEntry(SyHash *pHash) {
SyHashEntry_Pr *pEntry;
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return 0;
}
#endif
if(pHash->pCurrent == 0 || pHash->nEntry <= 0) {
pHash->pCurrent = pHash->pList;
return 0;
}
pEntry = pHash->pCurrent;
/* Advance the cursor */
pHash->pCurrent = pEntry->pNext;
/* Return the current entry */
return (SyHashEntry *)pEntry;
}
PH7_PRIVATE sxi32 SyHashForEach(SyHash *pHash, sxi32(*xStep)(SyHashEntry *, void *), void *pUserData) {
SyHashEntry_Pr *pEntry;
sxi32 rc;
sxu32 n;
#if defined(UNTRUST)
if(INVALID_HASH(pHash) || xStep == 0) {
return 0;
}
#endif
pEntry = pHash->pList;
for(n = 0 ; n < pHash->nEntry ; n++) {
/* Invoke the callback */
rc = xStep((SyHashEntry *)pEntry, pUserData);
if(rc != SXRET_OK) {
return rc;
}
/* Point to the next entry */
pEntry = pEntry->pNext;
}
return SXRET_OK;
}
static sxi32 HashGrowTable(SyHash *pHash) {
sxu32 nNewSize = pHash->nBucketSize * 2;
SyHashEntry_Pr *pEntry;
SyHashEntry_Pr **apNew;
sxu32 n, iBucket;
/* Allocate a new larger table */
apNew = (SyHashEntry_Pr **)SyMemBackendAlloc(pHash->pAllocator, nNewSize * sizeof(SyHashEntry_Pr *));
if(apNew == 0) {
/* Not so fatal,simply a performance hit */
return SXRET_OK;
}
/* Zero the new table */
SyZero((void *)apNew, nNewSize * sizeof(SyHashEntry_Pr *));
/* Rehash all entries */
for(n = 0, pEntry = pHash->pList; n < pHash->nEntry ; n++) {
pEntry->pNextCollide = pEntry->pPrevCollide = 0;
/* Install in the new bucket */
iBucket = pEntry->nHash & (nNewSize - 1);
pEntry->pNextCollide = apNew[iBucket];
if(apNew[iBucket] != 0) {
apNew[iBucket]->pPrevCollide = pEntry;
}
apNew[iBucket] = pEntry;
/* Point to the next entry */
pEntry = pEntry->pNext;
}
/* Release the old table and reflect the change */
SyMemBackendFree(pHash->pAllocator, (void *)pHash->apBucket);
pHash->apBucket = apNew;
pHash->nBucketSize = nNewSize;
return SXRET_OK;
}
static sxi32 HashInsert(SyHash *pHash, SyHashEntry_Pr *pEntry) {
sxu32 iBucket = pEntry->nHash & (pHash->nBucketSize - 1);
/* Insert the entry in its corresponding bcuket */
pEntry->pNextCollide = pHash->apBucket[iBucket];
if(pHash->apBucket[iBucket] != 0) {
pHash->apBucket[iBucket]->pPrevCollide = pEntry;
}
pHash->apBucket[iBucket] = pEntry;
/* Link to the entry list */
MACRO_LD_PUSH(pHash->pList, pEntry);
if(pHash->nEntry == 0) {
pHash->pCurrent = pHash->pList;
}
pHash->nEntry++;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyHashInsert(SyHash *pHash, const void *pKey, sxu32 nKeyLen, void *pUserData) {
SyHashEntry_Pr *pEntry;
sxi32 rc;
#if defined(UNTRUST)
if(INVALID_HASH(pHash) || pKey == 0) {
return SXERR_CORRUPT;
}
#endif
if(pHash->nEntry >= pHash->nBucketSize * SXHASH_FILL_FACTOR) {
rc = HashGrowTable(&(*pHash));
if(rc != SXRET_OK) {
return rc;
}
}
/* Allocate a new hash entry */
pEntry = (SyHashEntry_Pr *)SyMemBackendPoolAlloc(pHash->pAllocator, sizeof(SyHashEntry_Pr));
if(pEntry == 0) {
return SXERR_MEM;
}
/* Zero the entry */
SyZero(pEntry, sizeof(SyHashEntry_Pr));
pEntry->pHash = pHash;
pEntry->pKey = pKey;
pEntry->nKeyLen = nKeyLen;
pEntry->pUserData = pUserData;
pEntry->nHash = pHash->xHash(pEntry->pKey, pEntry->nKeyLen);
/* Finally insert the entry in its corresponding bucket */
rc = HashInsert(&(*pHash), pEntry);
return rc;
}
PH7_PRIVATE SyHashEntry *SyHashLastEntry(SyHash *pHash) {
#if defined(UNTRUST)
if(INVALID_HASH(pHash)) {
return 0;
}
#endif
/* Last inserted entry */
return (SyHashEntry *)pHash->pList;
}
/* SyRunTimeApi:sxutils.c */
PH7_PRIVATE sxi32 SyStrIsNumeric(const char *zSrc, sxu32 nLen, sxu8 *pReal, const char **pzTail) {
const char *zCur, *zEnd;
#ifdef UNTRUST
if(SX_EMPTY_STR(zSrc)) {
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
/* Jump leading white spaces */
while(zSrc < zEnd && (unsigned char)zSrc[0] < 0xc0 && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '+' || zSrc[0] == '-')) {
zSrc++;
}
zCur = zSrc;
if(pReal) {
*pReal = FALSE;
}
for(;;) {
if(zSrc >= zEnd || (unsigned char)zSrc[0] >= 0xc0 || !SyisDigit(zSrc[0])) {
break;
}
zSrc++;
if(zSrc >= zEnd || (unsigned char)zSrc[0] >= 0xc0 || !SyisDigit(zSrc[0])) {
break;
}
zSrc++;
if(zSrc >= zEnd || (unsigned char)zSrc[0] >= 0xc0 || !SyisDigit(zSrc[0])) {
break;
}
zSrc++;
if(zSrc >= zEnd || (unsigned char)zSrc[0] >= 0xc0 || !SyisDigit(zSrc[0])) {
break;
}
zSrc++;
};
if(zSrc < zEnd && zSrc > zCur) {
int c = zSrc[0];
if(c == '.') {
zSrc++;
if(pReal) {
*pReal = TRUE;
}
if(pzTail) {
while(zSrc < zEnd && (unsigned char)zSrc[0] < 0xc0 && SyisDigit(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == 'e' || zSrc[0] == 'E')) {
zSrc++;
if(zSrc < zEnd && (zSrc[0] == '+' || zSrc[0] == '-')) {
zSrc++;
}
while(zSrc < zEnd && (unsigned char)zSrc[0] < 0xc0 && SyisDigit(zSrc[0])) {
zSrc++;
}
}
}
} else if(c == 'e' || c == 'E') {
zSrc++;
if(pReal) {
*pReal = TRUE;
}
if(pzTail) {
if(zSrc < zEnd && (zSrc[0] == '+' || zSrc[0] == '-')) {
zSrc++;
}
while(zSrc < zEnd && (unsigned char)zSrc[0] < 0xc0 && SyisDigit(zSrc[0])) {
zSrc++;
}
}
}
}
if(pzTail) {
/* Point to the non numeric part */
*pzTail = zSrc;
}
return zSrc > zCur ? SXRET_OK /* String prefix is numeric */ : SXERR_INVALID /* Not a digit stream */;
}
#define SXINT32_MIN_STR "2147483648"
#define SXINT32_MAX_STR "2147483647"
#define SXINT64_MIN_STR "9223372036854775808"
#define SXINT64_MAX_STR "9223372036854775807"
PH7_PRIVATE sxi32 SyStrToInt32(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
int isNeg = FALSE;
const char *zEnd;
sxi32 nVal = 0;
sxi16 i;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxi32 *)pOutVal = 0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
isNeg = (zSrc[0] == '-') ? TRUE : FALSE;
zSrc++;
}
/* Skip leading zero */
while(zSrc < zEnd && zSrc[0] == '0') {
zSrc++;
}
i = 10;
if((sxu32)(zEnd - zSrc) >= 10) {
/* Handle overflow */
i = SyMemcmp(zSrc, (isNeg == TRUE) ? SXINT32_MIN_STR : SXINT32_MAX_STR, nLen) <= 0 ? 10 : 9;
}
for(;;) {
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
}
/* Skip trailing spaces */
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = (char *)zSrc;
}
if(pOutVal) {
if(isNeg == TRUE && nVal != 0) {
nVal = -nVal;
}
*(sxi32 *)pOutVal = nVal;
}
return (zSrc >= zEnd) ? SXRET_OK : SXERR_SYNTAX;
}
PH7_PRIVATE sxi32 SyStrToInt64(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
int isNeg = FALSE;
const char *zEnd;
sxi64 nVal;
sxi16 i;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxi32 *)pOutVal = 0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
isNeg = (zSrc[0] == '-') ? TRUE : FALSE;
zSrc++;
}
/* Skip leading zero */
while(zSrc < zEnd && zSrc[0] == '0') {
zSrc++;
}
i = 19;
if((sxu32)(zEnd - zSrc) >= 19) {
i = SyMemcmp(zSrc, isNeg ? SXINT64_MIN_STR : SXINT64_MAX_STR, 19) <= 0 ? 19 : 18 ;
}
nVal = 0;
for(;;) {
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
if(zSrc >= zEnd || !i || !SyisDigit(zSrc[0])) {
break;
}
nVal = nVal * 10 + (zSrc[0] - '0') ;
--i ;
zSrc++;
}
/* Skip trailing spaces */
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = (char *)zSrc;
}
if(pOutVal) {
if(isNeg == TRUE && nVal != 0) {
nVal = -nVal;
}
*(sxi64 *)pOutVal = nVal;
}
return (zSrc >= zEnd) ? SXRET_OK : SXERR_SYNTAX;
}
PH7_PRIVATE sxi32 SyHexToint(sxi32 c) {
switch(c) {
case '0':
return 0;
case '1':
return 1;
case '2':
return 2;
case '3':
return 3;
case '4':
return 4;
case '5':
return 5;
case '6':
return 6;
case '7':
return 7;
case '8':
return 8;
case '9':
return 9;
case 'A':
case 'a':
return 10;
case 'B':
case 'b':
return 11;
case 'C':
case 'c':
return 12;
case 'D':
case 'd':
return 13;
case 'E':
case 'e':
return 14;
case 'F':
case 'f':
return 15;
}
return -1;
}
PH7_PRIVATE sxi32 SyHexStrToInt64(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
const char *zIn, *zEnd;
int isNeg = FALSE;
sxi64 nVal = 0;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxi32 *)pOutVal = 0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (*zSrc == '-' || *zSrc == '+')) {
isNeg = (zSrc[0] == '-') ? TRUE : FALSE;
zSrc++;
}
if(zSrc < &zEnd[-2] && zSrc[0] == '0' && (zSrc[1] == 'x' || zSrc[1] == 'X')) {
/* Bypass hex prefix */
zSrc += sizeof(char) * 2;
}
/* Skip leading zero */
while(zSrc < zEnd && zSrc[0] == '0') {
zSrc++;
}
zIn = zSrc;
for(;;) {
if(zSrc >= zEnd || !SyisHex(zSrc[0]) || (int)(zSrc - zIn) > 15) {
break;
}
nVal = nVal * 16 + SyHexToint(zSrc[0]);
zSrc++ ;
if(zSrc >= zEnd || !SyisHex(zSrc[0]) || (int)(zSrc - zIn) > 15) {
break;
}
nVal = nVal * 16 + SyHexToint(zSrc[0]);
zSrc++ ;
if(zSrc >= zEnd || !SyisHex(zSrc[0]) || (int)(zSrc - zIn) > 15) {
break;
}
nVal = nVal * 16 + SyHexToint(zSrc[0]);
zSrc++ ;
if(zSrc >= zEnd || !SyisHex(zSrc[0]) || (int)(zSrc - zIn) > 15) {
break;
}
nVal = nVal * 16 + SyHexToint(zSrc[0]);
zSrc++ ;
}
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = zSrc;
}
if(pOutVal) {
if(isNeg == TRUE && nVal != 0) {
nVal = -nVal;
}
*(sxi64 *)pOutVal = nVal;
}
return zSrc >= zEnd ? SXRET_OK : SXERR_SYNTAX;
}
PH7_PRIVATE sxi32 SyOctalStrToInt64(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
const char *zIn, *zEnd;
int isNeg = FALSE;
sxi64 nVal = 0;
int c;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxi32 *)pOutVal = 0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
isNeg = (zSrc[0] == '-') ? TRUE : FALSE;
zSrc++;
}
/* Skip leading zero */
while(zSrc < zEnd && zSrc[0] == '0') {
zSrc++;
}
zIn = zSrc;
for(;;) {
if(zSrc >= zEnd || !SyisDigit(zSrc[0])) {
break;
}
if((c = zSrc[0] - '0') > 7 || (int)(zSrc - zIn) > 20) {
break;
}
nVal = nVal * 8 + c;
zSrc++;
if(zSrc >= zEnd || !SyisDigit(zSrc[0])) {
break;
}
if((c = zSrc[0] - '0') > 7 || (int)(zSrc - zIn) > 20) {
break;
}
nVal = nVal * 8 + c;
zSrc++;
if(zSrc >= zEnd || !SyisDigit(zSrc[0])) {
break;
}
if((c = zSrc[0] - '0') > 7 || (int)(zSrc - zIn) > 20) {
break;
}
nVal = nVal * 8 + c;
zSrc++;
if(zSrc >= zEnd || !SyisDigit(zSrc[0])) {
break;
}
if((c = zSrc[0] - '0') > 7 || (int)(zSrc - zIn) > 20) {
break;
}
nVal = nVal * 8 + c;
zSrc++;
}
/* Skip trailing spaces */
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = zSrc;
}
if(pOutVal) {
if(isNeg == TRUE && nVal != 0) {
nVal = -nVal;
}
*(sxi64 *)pOutVal = nVal;
}
return (zSrc >= zEnd) ? SXRET_OK : SXERR_SYNTAX;
}
PH7_PRIVATE sxi32 SyBinaryStrToInt64(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
const char *zIn, *zEnd;
int isNeg = FALSE;
sxi64 nVal = 0;
int c;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxi32 *)pOutVal = 0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
isNeg = (zSrc[0] == '-') ? TRUE : FALSE;
zSrc++;
}
if(zSrc < &zEnd[-2] && zSrc[0] == '0' && (zSrc[1] == 'b' || zSrc[1] == 'B')) {
/* Bypass binary prefix */
zSrc += sizeof(char) * 2;
}
/* Skip leading zero */
while(zSrc < zEnd && zSrc[0] == '0') {
zSrc++;
}
zIn = zSrc;
for(;;) {
if(zSrc >= zEnd || (zSrc[0] != '1' && zSrc[0] != '0') || (int)(zSrc - zIn) > 62) {
break;
}
c = zSrc[0] - '0';
nVal = (nVal << 1) + c;
zSrc++;
if(zSrc >= zEnd || (zSrc[0] != '1' && zSrc[0] != '0') || (int)(zSrc - zIn) > 62) {
break;
}
c = zSrc[0] - '0';
nVal = (nVal << 1) + c;
zSrc++;
if(zSrc >= zEnd || (zSrc[0] != '1' && zSrc[0] != '0') || (int)(zSrc - zIn) > 62) {
break;
}
c = zSrc[0] - '0';
nVal = (nVal << 1) + c;
zSrc++;
if(zSrc >= zEnd || (zSrc[0] != '1' && zSrc[0] != '0') || (int)(zSrc - zIn) > 62) {
break;
}
c = zSrc[0] - '0';
nVal = (nVal << 1) + c;
zSrc++;
}
/* Skip trailing spaces */
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = zSrc;
}
if(pOutVal) {
if(isNeg == TRUE && nVal != 0) {
nVal = -nVal;
}
*(sxi64 *)pOutVal = nVal;
}
return (zSrc >= zEnd) ? SXRET_OK : SXERR_SYNTAX;
}
PH7_PRIVATE sxi32 SyStrToReal(const char *zSrc, sxu32 nLen, void *pOutVal, const char **zRest) {
#define SXDBL_DIG 15
#define SXDBL_MAX_EXP 308
#define SXDBL_MIN_EXP_PLUS 307
static const sxreal aTab[] = {
10,
1.0e2,
1.0e4,
1.0e8,
1.0e16,
1.0e32,
1.0e64,
1.0e128,
1.0e256
};
sxu8 neg = FALSE;
sxreal Val = 0.0;
const char *zEnd;
sxi32 Lim, exp;
sxreal *p = 0;
#ifdef UNTRUST
if(SX_EMPTY_STR(zSrc)) {
if(pOutVal) {
*(sxreal *)pOutVal = 0.0;
}
return SXERR_EMPTY;
}
#endif
zEnd = &zSrc[nLen];
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
neg = zSrc[0] == '-' ? TRUE : FALSE ;
zSrc++;
}
Lim = SXDBL_DIG ;
for(;;) {
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
zSrc++ ;
--Lim;
}
if(zSrc < zEnd && (zSrc[0] == '.' || zSrc[0] == ',')) {
sxreal dec = 1.0;
zSrc++;
for(;;) {
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
dec *= 10.0;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
dec *= 10.0;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
dec *= 10.0;
zSrc++ ;
--Lim;
if(zSrc >= zEnd || !Lim || !SyisDigit(zSrc[0])) {
break ;
}
Val = Val * 10.0 + (zSrc[0] - '0') ;
dec *= 10.0;
zSrc++ ;
--Lim;
}
Val /= dec;
}
if(neg == TRUE && Val != 0.0) {
Val = -Val ;
}
if(Lim <= 0) {
/* jump overflow digit */
while(zSrc < zEnd) {
if(zSrc[0] == 'e' || zSrc[0] == 'E') {
break;
}
zSrc++;
}
}
neg = FALSE;
if(zSrc < zEnd && (zSrc[0] == 'e' || zSrc[0] == 'E')) {
zSrc++;
if(zSrc < zEnd && (zSrc[0] == '-' || zSrc[0] == '+')) {
neg = zSrc[0] == '-' ? TRUE : FALSE ;
zSrc++;
}
exp = 0;
while(zSrc < zEnd && SyisDigit(zSrc[0]) && exp < SXDBL_MAX_EXP) {
exp = exp * 10 + (zSrc[0] - '0');
zSrc++;
}
if(neg) {
if(exp > SXDBL_MIN_EXP_PLUS) {
exp = SXDBL_MIN_EXP_PLUS ;
}
} else if(exp > SXDBL_MAX_EXP) {
exp = SXDBL_MAX_EXP;
}
for(p = (sxreal *)aTab ; exp ; exp >>= 1, p++) {
if(exp & 01) {
if(neg) {
Val /= *p ;
} else {
Val *= *p;
}
}
}
}
while(zSrc < zEnd && SyisSpace(zSrc[0])) {
zSrc++;
}
if(zRest) {
*zRest = zSrc;
}
if(pOutVal) {
*(sxreal *)pOutVal = Val;
}
return zSrc >= zEnd ? SXRET_OK : SXERR_SYNTAX;
}
/* SyRunTimeApi:sxlib.c */
static sxu32 SyBinHash(const void *pSrc, sxu32 nLen) {
register unsigned char *zIn = (unsigned char *)pSrc;
unsigned char *zEnd;
sxu32 nH = 5381;
zEnd = &zIn[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + zIn[0] ;
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + zIn[0] ;
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + zIn[0] ;
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + zIn[0] ;
zIn++;
}
return nH;
}
PH7_PRIVATE sxu32 SyStrHash(const void *pSrc, sxu32 nLen) {
register unsigned char *zIn = (unsigned char *)pSrc;
unsigned char *zEnd;
sxu32 nH = 5381;
zEnd = &zIn[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + SyToLower(zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + SyToLower(zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + SyToLower(zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
nH = nH * 33 + SyToLower(zIn[0]);
zIn++;
}
return nH;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE sxi32 SyBase64Encode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
static const unsigned char zBase64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
unsigned char *zIn = (unsigned char *)zSrc;
unsigned char z64[4];
sxu32 i;
sxi32 rc;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
return SXERR_EMPTY;
}
#endif
for(i = 0; i + 2 < nLen; i += 3) {
z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
z64[1] = zBase64[(((zIn[i] & 0x03) << 4) | (zIn[i + 1] >> 4)) & 0x3F];
z64[2] = zBase64[(((zIn[i + 1] & 0x0F) << 2) | (zIn[i + 2] >> 6)) & 0x3F];
z64[3] = zBase64[ zIn[i + 2] & 0x3F];
rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
}
if(i + 1 < nLen) {
z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
z64[1] = zBase64[(((zIn[i] & 0x03) << 4) | (zIn[i + 1] >> 4)) & 0x3F];
z64[2] = zBase64[(zIn[i + 1] & 0x0F) << 2 ];
z64[3] = '=';
rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
} else if(i < nLen) {
z64[0] = zBase64[(zIn[i] >> 2) & 0x3F];
z64[1] = zBase64[(zIn[i] & 0x03) << 4];
z64[2] = '=';
z64[3] = '=';
rc = xConsumer((const void *)z64, sizeof(z64), pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyBase64Decode(const char *zB64, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
static const sxu32 aBase64Trans[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0, 0,
0, 0, 0
};
sxu32 n, w, x, y, z;
sxi32 rc;
unsigned char zOut[10];
#if defined(UNTRUST)
if(SX_EMPTY_STR(zB64) || xConsumer == 0) {
return SXERR_EMPTY;
}
#endif
while(nLen > 0 && zB64[nLen - 1] == '=') {
nLen--;
}
for(n = 0 ; n + 3 < nLen ; n += 4) {
w = aBase64Trans[zB64[n] & 0x7F];
x = aBase64Trans[zB64[n + 1] & 0x7F];
y = aBase64Trans[zB64[n + 2] & 0x7F];
z = aBase64Trans[zB64[n + 3] & 0x7F];
zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F);
zOut[2] = ((y << 6) & 0xC0) | (z & 0x3F);
rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 3, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
}
if(n + 2 < nLen) {
w = aBase64Trans[zB64[n] & 0x7F];
x = aBase64Trans[zB64[n + 1] & 0x7F];
y = aBase64Trans[zB64[n + 2] & 0x7F];
zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
zOut[1] = ((x << 4) & 0xF0) | ((y >> 2) & 0x0F);
rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 2, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
} else if(n + 1 < nLen) {
w = aBase64Trans[zB64[n] & 0x7F];
x = aBase64Trans[zB64[n + 1] & 0x7F];
zOut[0] = ((w << 2) & 0xFC) | ((x >> 4) & 0x03);
rc = xConsumer((const void *)zOut, sizeof(unsigned char) * 1, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT;
}
}
return SXRET_OK;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
#define INVALID_LEXER(LEX) ( LEX == 0 || LEX->xTokenizer == 0 )
PH7_PRIVATE sxi32 SyLexInit(SyLex *pLex, SySet *pSet, ProcTokenizer xTokenizer, void *pUserData) {
SyStream *pStream;
#if defined (UNTRUST)
if(pLex == 0 || xTokenizer == 0) {
return SXERR_CORRUPT;
}
#endif
pLex->pTokenSet = 0;
/* Initialize lexer fields */
if(pSet) {
if(SySetElemSize(pSet) != sizeof(SyToken)) {
return SXERR_INVALID;
}
pLex->pTokenSet = pSet;
}
pStream = &pLex->sStream;
pLex->xTokenizer = xTokenizer;
pLex->pUserData = pUserData;
pStream->nLine = 1;
pStream->nIgn = 0;
pStream->zText = pStream->zEnd = 0;
pStream->pSet = pSet;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyLexTokenizeInput(SyLex *pLex, const char *zInput, sxu32 nLen, void *pCtxData, ProcSort xSort, ProcCmp xCmp) {
const unsigned char *zCur;
SyStream *pStream;
SyToken sToken;
sxi32 rc;
#if defined (UNTRUST)
if(INVALID_LEXER(pLex) || zInput == 0) {
return SXERR_CORRUPT;
}
#endif
pStream = &pLex->sStream;
/* Point to the head of the input */
pStream->zText = pStream->zInput = (const unsigned char *)zInput;
/* Point to the end of the input */
pStream->zEnd = &pStream->zInput[nLen];
for(;;) {
if(pStream->zText >= pStream->zEnd) {
/* End of the input reached */
break;
}
zCur = pStream->zText;
/* Call the tokenizer callback */
rc = pLex->xTokenizer(pStream, &sToken, pLex->pUserData, pCtxData);
if(rc != SXRET_OK && rc != SXERR_CONTINUE) {
/* Tokenizer callback request an operation abort */
if(rc == SXERR_ABORT) {
return SXERR_ABORT;
}
break;
}
if(rc == SXERR_CONTINUE) {
/* Request to ignore this token */
pStream->nIgn++;
} else if(pLex->pTokenSet) {
/* Put the token in the set */
rc = SySetPut(pLex->pTokenSet, (const void *)&sToken);
if(rc != SXRET_OK) {
break;
}
}
if(zCur >= pStream->zText) {
/* Automatic advance of the stream cursor */
pStream->zText = &zCur[1];
}
}
if(xSort && pLex->pTokenSet) {
SyToken *aToken = (SyToken *)SySetBasePtr(pLex->pTokenSet);
/* Sort the extrated tokens */
if(xCmp == 0) {
/* Use a default comparison function */
xCmp = SyMemcmp;
}
xSort(aToken, SySetUsed(pLex->pTokenSet), sizeof(SyToken), xCmp);
}
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyLexRelease(SyLex *pLex) {
sxi32 rc = SXRET_OK;
#if defined (UNTRUST)
if(INVALID_LEXER(pLex)) {
return SXERR_CORRUPT;
}
#else
SXUNUSED(pLex); /* Prevent compiler warning */
#endif
return rc;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
#define SAFE_HTTP(C) (SyisAlphaNum(c) || c == '_' || c == '-' || c == '$' || c == '.' )
PH7_PRIVATE sxi32 SyUriEncode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData) {
unsigned char *zIn = (unsigned char *)zSrc;
unsigned char zHex[3] = { '%', 0, 0 };
unsigned char zOut[2];
unsigned char *zCur, *zEnd;
sxi32 c;
sxi32 rc;
#ifdef UNTRUST
if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
return SXERR_EMPTY;
}
#endif
rc = SXRET_OK;
zEnd = &zIn[nLen];
zCur = zIn;
for(;;) {
if(zCur >= zEnd) {
if(zCur != zIn) {
rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData);
}
break;
}
c = zCur[0];
if(SAFE_HTTP(c)) {
zCur++;
continue;
}
if(zCur != zIn && SXRET_OK != (rc = xConsumer(zIn, (sxu32)(zCur - zIn), pUserData))) {
break;
}
if(c == ' ') {
zOut[0] = '+';
rc = xConsumer((const void *)zOut, sizeof(unsigned char), pUserData);
} else {
zHex[1] = "0123456789ABCDEF"[(c >> 4) & 0x0F];
zHex[2] = "0123456789ABCDEF"[c & 0x0F];
rc = xConsumer(zHex, sizeof(zHex), pUserData);
}
if(SXRET_OK != rc) {
break;
}
zIn = &zCur[1];
zCur = zIn ;
}
return rc == SXRET_OK ? SXRET_OK : SXERR_ABORT;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
static sxi32 SyAsciiToHex(sxi32 c) {
if(c >= 'a' && c <= 'f') {
c += 10 - 'a';
return c;
}
if(c >= '0' && c <= '9') {
c -= '0';
return c;
}
if(c >= 'A' && c <= 'F') {
c += 10 - 'A';
return c;
}
return 0;
}
PH7_PRIVATE sxi32 SyUriDecode(const char *zSrc, sxu32 nLen, ProcConsumer xConsumer, void *pUserData, int bUTF8) {
static const sxu8 Utf8Trans[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00
};
const char *zIn = zSrc;
const char *zEnd;
const char *zCur;
sxu8 *zOutPtr;
sxu8 zOut[10];
sxi32 c, d;
sxi32 rc;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zSrc) || xConsumer == 0) {
return SXERR_EMPTY;
}
#endif
rc = SXRET_OK;
zEnd = &zSrc[nLen];
zCur = zIn;
for(;;) {
while(zCur < zEnd && zCur[0] != '%' && zCur[0] != '+') {
zCur++;
}
if(zCur != zIn) {
/* Consume input */
rc = xConsumer(zIn, (unsigned int)(zCur - zIn), pUserData);
if(rc != SXRET_OK) {
/* User consumer routine request an operation abort */
break;
}
}
if(zCur >= zEnd) {
rc = SXRET_OK;
break;
}
/* Decode unsafe HTTP characters */
zOutPtr = zOut;
if(zCur[0] == '+') {
*zOutPtr++ = ' ';
zCur++;
} else {
if(&zCur[2] >= zEnd) {
rc = SXERR_OVERFLOW;
break;
}
c = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]);
zCur += 3;
if(c < 0x000C0) {
*zOutPtr++ = (sxu8)c;
} else {
c = Utf8Trans[c - 0xC0];
while(zCur[0] == '%') {
d = (SyAsciiToHex(zCur[1]) << 4) | SyAsciiToHex(zCur[2]);
if((d & 0xC0) != 0x80) {
break;
}
c = (c << 6) + (0x3f & d);
zCur += 3;
}
if(bUTF8 == FALSE) {
*zOutPtr++ = (sxu8)c;
} else {
SX_WRITE_UTF8(zOutPtr, c);
}
}
}
/* Consume the decoded characters */
rc = xConsumer((const void *)zOut, (unsigned int)(zOutPtr - zOut), pUserData);
if(rc != SXRET_OK) {
break;
}
/* Synchronize pointers */
zIn = zCur;
}
return rc;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
static const char *zEngDay[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
};
static const char *zEngMonth[] = {
"January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"
};
static const char *GetDay(sxi32 i) {
return zEngDay[ i % 7 ];
}
static const char *GetMonth(sxi32 i) {
return zEngMonth[ i % 12 ];
}
PH7_PRIVATE const char *SyTimeGetDay(sxi32 iDay) {
return GetDay(iDay);
}
PH7_PRIVATE const char *SyTimeGetMonth(sxi32 iMonth) {
return GetMonth(iMonth);
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
/* SyRunTimeApi: sxfmt.c */
#define SXFMT_BUFSIZ 1024 /* Conversion buffer size */
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define SXFMT_RADIX 1 /* Integer types.%d, %x, %o, and so forth */
#define SXFMT_FLOAT 2 /* Floating point.%f */
#define SXFMT_EXP 3 /* Exponentional notation.%e and %E */
#define SXFMT_GENERIC 4 /* Floating or exponential, depending on exponent.%g */
#define SXFMT_SIZE 5 /* Total number of characters processed so far.%n */
#define SXFMT_STRING 6 /* Strings.%s */
#define SXFMT_PERCENT 7 /* Percent symbol.%% */
#define SXFMT_CHARX 8 /* Characters.%c */
#define SXFMT_ERROR 9 /* Used to indicate no such conversion type */
/* Extension by Symisc Systems */
#define SXFMT_RAWSTR 13 /* %z Pointer to raw string (SyString *) */
#define SXFMT_UNUSED 15
/*
** Allowed values for SyFmtInfo.flags
*/
#define SXFLAG_SIGNED 0x01
#define SXFLAG_UNSIGNED 0x02
/* Allowed values for SyFmtConsumer.nType */
#define SXFMT_CONS_PROC 1 /* Consumer is a procedure */
#define SXFMT_CONS_STR 2 /* Consumer is a managed string */
#define SXFMT_CONS_FILE 5 /* Consumer is an open File */
#define SXFMT_CONS_BLOB 6 /* Consumer is a BLOB */
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct SyFmtInfo SyFmtInfo;
struct SyFmtInfo {
char fmttype; /* The format field code letter [i.e: 'd','s','x'] */
sxu8 base; /* The base for radix conversion */
int flags; /* One or more of SXFLAG_ constants below */
sxu8 type; /* Conversion paradigm */
const char *charset; /* The character set for conversion */
const char *prefix; /* Prefix on non-zero values in alt format */
};
typedef struct SyFmtConsumer SyFmtConsumer;
struct SyFmtConsumer {
sxu32 nLen; /* Total output length */
sxi32 nType; /* Type of the consumer see below */
sxi32 rc; /* Consumer return value;Abort processing if rc != SXRET_OK */
union {
struct {
ProcConsumer xUserConsumer;
void *pUserData;
} sFunc;
SyBlob *pBlob;
} uConsumer;
};
#ifndef SX_OMIT_FLOATINGPOINT
static int getdigit(sxlongreal *val, int *cnt) {
sxlongreal d;
int digit;
if((*cnt)++ >= 16) {
return '0';
}
digit = (int) * val;
d = digit;
*val = (*val - d) * 10.0;
return digit + '0' ;
}
#endif /* SX_OMIT_FLOATINGPOINT */
/*
* The following routine was taken from the SQLITE2 source tree and was
* extended by Symisc Systems to fit its need.
* Status: Public Domain
*/
static sxi32 InternFormat(ProcConsumer xConsumer, void *pUserData, const char *zFormat, va_list ap) {
/*
* The following table is searched linearly, so it is good to put the most frequently
* used conversion types first.
*/
static const SyFmtInfo aFmt[] = {
{ 'd', 10, SXFLAG_SIGNED, SXFMT_RADIX, "0123456789", 0 },
{ 's', 0, 0, SXFMT_STRING, 0, 0 },
{ 'c', 0, 0, SXFMT_CHARX, 0, 0 },
{ 'x', 16, 0, SXFMT_RADIX, "0123456789abcdef", "x0" },
{ 'X', 16, 0, SXFMT_RADIX, "0123456789ABCDEF", "X0" },
/* -- Extensions by Symisc Systems -- */
{ 'z', 0, 0, SXFMT_RAWSTR, 0, 0 }, /* Pointer to a raw string (SyString *) */
{ 'B', 2, 0, SXFMT_RADIX, "01", "b0"},
/* -- End of Extensions -- */
{ 'o', 8, 0, SXFMT_RADIX, "01234567", "0" },
{ 'u', 10, 0, SXFMT_RADIX, "0123456789", 0 },
#ifndef SX_OMIT_FLOATINGPOINT
{ 'f', 0, SXFLAG_SIGNED, SXFMT_FLOAT, 0, 0 },
{ 'e', 0, SXFLAG_SIGNED, SXFMT_EXP, "e", 0 },
{ 'E', 0, SXFLAG_SIGNED, SXFMT_EXP, "E", 0 },
{ 'g', 0, SXFLAG_SIGNED, SXFMT_GENERIC, "e", 0 },
{ 'G', 0, SXFLAG_SIGNED, SXFMT_GENERIC, "E", 0 },
#endif
{ 'i', 10, SXFLAG_SIGNED, SXFMT_RADIX, "0123456789", 0 },
{ 'n', 0, 0, SXFMT_SIZE, 0, 0 },
{ '%', 0, 0, SXFMT_PERCENT, 0, 0 },
{ 'p', 10, 0, SXFMT_RADIX, "0123456789", 0 }
};
int c; /* Next character in the format string */
char *bufpt; /* Pointer to the conversion buffer */
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
int width; /* Width of the current field */
sxu8 flag_leftjustify; /* True if "-" flag is present */
sxu8 flag_plussign; /* True if "+" flag is present */
sxu8 flag_blanksign; /* True if " " flag is present */
sxu8 flag_alternateform; /* True if "#" flag is present */
sxu8 flag_zeropad; /* True if field width constant starts with zero */
sxu8 flag_long; /* True if "l" flag is present */
sxi64 longvalue; /* Value for integer types */
const SyFmtInfo *infop; /* Pointer to the appropriate info structure */
char buf[SXFMT_BUFSIZ]; /* Conversion buffer */
char prefix; /* Prefix character."+" or "-" or " " or '\0'.*/
sxu8 errorflag = 0; /* True if an error is encountered */
sxu8 xtype; /* Conversion paradigm */
char *zExtra;
static char spaces[] = " ";
#define etSPACESIZE ((int)sizeof(spaces)-1)
#ifndef SX_OMIT_FLOATINGPOINT
sxlongreal realvalue; /* Value for real types */
int exp; /* exponent of real numbers */
double rounder; /* Used for rounding floating point values */
sxu8 flag_dp; /* True if decimal point should be shown */
sxu8 flag_rtz; /* True if trailing zeros should be removed */
sxu8 flag_exp; /* True to force display of the exponent */
int nsd; /* Number of significant digits returned */
#endif
int rc;
length = 0;
bufpt = 0;
for(; (c = (*zFormat)) != 0; ++zFormat) {
if(c != '%') {
unsigned int amt;
bufpt = (char *)zFormat;
amt = 1;
while((c = (*++zFormat)) != '%' && c != 0) {
amt++;
}
rc = xConsumer((const void *)bufpt, amt, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
if(c == 0) {
return errorflag > 0 ? SXERR_FORMAT : SXRET_OK;
}
}
if((c = (*++zFormat)) == 0) {
errorflag = 1;
rc = xConsumer("%", sizeof("%") - 1, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
return errorflag > 0 ? SXERR_FORMAT : SXRET_OK;
}
/* Find out what flags are present */
flag_leftjustify = flag_plussign = flag_blanksign =
flag_alternateform = flag_zeropad = 0;
do {
switch(c) {
case '-':
flag_leftjustify = 1;
c = 0;
break;
case '+':
flag_plussign = 1;
c = 0;
break;
case ' ':
flag_blanksign = 1;
c = 0;
break;
case '#':
flag_alternateform = 1;
c = 0;
break;
case '0':
flag_zeropad = 1;
c = 0;
break;
default:
break;
}
} while(c == 0 && (c = (*++zFormat)) != 0);
/* Get the field width */
width = 0;
if(c == '*') {
width = va_arg(ap, int);
if(width < 0) {
flag_leftjustify = 1;
width = -width;
}
c = *++zFormat;
} else {
while(c >= '0' && c <= '9') {
width = width * 10 + c - '0';
c = *++zFormat;
}
}
if(width > SXFMT_BUFSIZ - 10) {
width = SXFMT_BUFSIZ - 10;
}
/* Get the precision */
precision = -1;
if(c == '.') {
precision = 0;
c = *++zFormat;
if(c == '*') {
precision = va_arg(ap, int);
if(precision < 0) {
precision = -precision;
}
c = *++zFormat;
} else {
while(c >= '0' && c <= '9') {
precision = precision * 10 + c - '0';
c = *++zFormat;
}
}
}
/* Get the conversion type modifier */
flag_long = 0;
if(c == 'l' || c == 'q' /* BSD quad (expect a 64-bit integer) */) {
flag_long = (c == 'q') ? 2 : 1;
c = *++zFormat;
if(c == 'l') {
/* Standard printf emulation 'lld' (expect a 64bit integer) */
flag_long = 2;
}
}
/* Fetch the info entry for the field */
infop = 0;
xtype = SXFMT_ERROR;
for(idx = 0; idx < (int)SX_ARRAYSIZE(aFmt); idx++) {
if(c == aFmt[idx].fmttype) {
infop = &aFmt[idx];
xtype = infop->type;
break;
}
}
zExtra = 0;
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_plussign TRUE if a '+' is present.
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long TRUE if the letter 'l' (ell) or 'q'(BSD quad) prefixed
** the conversion character.
** flag_blanksign TRUE if a ' ' is present.
** width The specified field width.This is
** always non-negative.Zero is the default.
** precision The specified precision.The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch(xtype) {
case SXFMT_RADIX:
if(flag_long > 0) {
if(flag_long > 1) {
/* BSD quad: expect a 64-bit integer */
longvalue = va_arg(ap, sxi64);
} else {
longvalue = va_arg(ap, sxlong);
}
} else {
if(infop->flags & SXFLAG_SIGNED) {
longvalue = va_arg(ap, sxi32);
} else {
longvalue = va_arg(ap, sxu32);
}
}
/* Limit the precision to prevent overflowing buf[] during conversion */
if(precision > SXFMT_BUFSIZ - 40) {
precision = SXFMT_BUFSIZ - 40;
}
#if 1
/* For the format %#x, the value zero is printed "0" not "0x0".
** I think this is stupid.*/
if(longvalue == 0) {
flag_alternateform = 0;
}
#else
/* More sensible: turn off the prefix for octal (to prevent "00"),
** but leave the prefix for hex.*/
if(longvalue == 0 && infop->base == 8) {
flag_alternateform = 0;
}
#endif
if(infop->flags & SXFLAG_SIGNED) {
if(longvalue < 0) {
longvalue = -longvalue;
/* Ticket 1433-003 */
if(longvalue < 0) {
/* Overflow */
longvalue = SXI64_HIGH;
}
prefix = '-';
} else if(flag_plussign) {
prefix = '+';
} else if(flag_blanksign) {
prefix = ' ';
} else {
prefix = 0;
}
} else {
if(longvalue < 0) {
longvalue = -longvalue;
/* Ticket 1433-003 */
if(longvalue < 0) {
/* Overflow */
longvalue = SXI64_HIGH;
}
}
prefix = 0;
}
if(flag_zeropad && precision < width - (prefix != 0)) {
precision = width - (prefix != 0);
}
bufpt = &buf[SXFMT_BUFSIZ - 1];
{
register const char *cset; /* Use registers for speed */
register int base;
cset = infop->charset;
base = infop->base;
do { /* Convert to ascii */
*(--bufpt) = cset[longvalue % base];
longvalue = longvalue / base;
} while(longvalue > 0);
}
length = &buf[SXFMT_BUFSIZ - 1] - bufpt;
for(idx = precision - length; idx > 0; idx--) {
*(--bufpt) = '0'; /* Zero pad */
}
if(prefix) {
*(--bufpt) = prefix; /* Add sign */
}
if(flag_alternateform && infop->prefix) { /* Add "0" or "0x" */
const char *pre;
char x;
pre = infop->prefix;
if(*bufpt != pre[0]) {
for(pre = infop->prefix; (x = (*pre)) != 0; pre++) {
*(--bufpt) = x;
}
}
}
length = &buf[SXFMT_BUFSIZ - 1] - bufpt;
break;
case SXFMT_FLOAT:
case SXFMT_EXP:
case SXFMT_GENERIC:
#ifndef SX_OMIT_FLOATINGPOINT
realvalue = va_arg(ap, double);
if(precision < 0) {
precision = 6; /* Set default precision */
}
if(precision > SXFMT_BUFSIZ - 40) {
precision = SXFMT_BUFSIZ - 40;
}
if(realvalue < 0.0) {
realvalue = -realvalue;
prefix = '-';
} else {
if(flag_plussign) {
prefix = '+';
} else if(flag_blanksign) {
prefix = ' ';
} else {
prefix = 0;
}
}
if(infop->type == SXFMT_GENERIC && precision > 0) {
precision--;
}
rounder = 0.0;
#if 0
/* Rounding works like BSD when the constant 0.4999 is used.Wierd! */
for(idx = precision, rounder = 0.4999; idx > 0; idx--, rounder *= 0.1);
#else
/* It makes more sense to use 0.5 */
for(idx = precision, rounder = 0.5; idx > 0; idx--, rounder *= 0.1);
#endif
if(infop->type == SXFMT_FLOAT) {
realvalue += rounder;
}
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if(realvalue > 0.0) {
while(realvalue >= 1e8 && exp <= 350) {
realvalue *= 1e-8;
exp += 8;
}
while(realvalue >= 10.0 && exp <= 350) {
realvalue *= 0.1;
exp++;
}
while(realvalue < 1e-8 && exp >= -350) {
realvalue *= 1e8;
exp -= 8;
}
while(realvalue < 1.0 && exp >= -350) {
realvalue *= 10.0;
exp--;
}
if(exp > 350 || exp < -350) {
bufpt = "NaN";
length = 3;
break;
}
}
bufpt = buf;
/*
** If the field type is etGENERIC, then convert to either etEXP
** or etFLOAT, as appropriate.
*/
flag_exp = xtype == SXFMT_EXP;
if(xtype != SXFMT_FLOAT) {
realvalue += rounder;
if(realvalue >= 10.0) {
realvalue *= 0.1;
exp++;
}
}
if(xtype == SXFMT_GENERIC) {
flag_rtz = !flag_alternateform;
if(exp < -4 || exp > precision) {
xtype = SXFMT_EXP;
} else {
precision = precision - exp;
xtype = SXFMT_FLOAT;
}
} else {
flag_rtz = 0;
}
/*
** The "exp+precision" test causes output to be of type etEXP if
** the precision is too large to fit in buf[].
*/
nsd = 0;
if(xtype == SXFMT_FLOAT && exp + precision < SXFMT_BUFSIZ - 30) {
flag_dp = (precision > 0 || flag_alternateform);
if(prefix) {
*(bufpt++) = prefix; /* Sign */
}
if(exp < 0) {
*(bufpt++) = '0'; /* Digits before "." */
} else
for(; exp >= 0; exp--) {
*(bufpt++) = (char)getdigit(&realvalue, &nsd);
}
if(flag_dp) {
*(bufpt++) = '.'; /* The decimal point */
}
for(exp++; exp < 0 && precision > 0; precision--, exp++) {
*(bufpt++) = '0';
}
while((precision--) > 0) {
*(bufpt++) = (char)getdigit(&realvalue, &nsd);
}
*(bufpt--) = 0; /* Null terminate */
if(flag_rtz && flag_dp) { /* Remove trailing zeros and "." */
while(bufpt >= buf && *bufpt == '0') {
*(bufpt--) = 0;
}
if(bufpt >= buf && *bufpt == '.') {
*(bufpt--) = 0;
}
}
bufpt++; /* point to next free slot */
} else { /* etEXP or etGENERIC */
flag_dp = (precision > 0 || flag_alternateform);
if(prefix) {
*(bufpt++) = prefix; /* Sign */
}
*(bufpt++) = (char)getdigit(&realvalue, &nsd); /* First digit */
if(flag_dp) {
*(bufpt++) = '.'; /* Decimal point */
}
while((precision--) > 0) {
*(bufpt++) = (char)getdigit(&realvalue, &nsd);
}
bufpt--; /* point to last digit */
if(flag_rtz && flag_dp) { /* Remove tail zeros */
while(bufpt >= buf && *bufpt == '0') {
*(bufpt--) = 0;
}
if(bufpt >= buf && *bufpt == '.') {
*(bufpt--) = 0;
}
}
bufpt++; /* point to next free slot */
if(exp || flag_exp) {
*(bufpt++) = infop->charset[0];
if(exp < 0) {
*(bufpt++) = '-'; /* sign of exp */
exp = -exp;
} else {
*(bufpt++) = '+';
}
if(exp >= 100) {
*(bufpt++) = (char)((exp / 100) + '0'); /* 100's digit */
exp %= 100;
}
*(bufpt++) = (char)(exp / 10 + '0'); /* 10's digit */
*(bufpt++) = (char)(exp % 10 + '0'); /* 1's digit */
}
}
/* The converted number is in buf[] and zero terminated.Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions.*/
length = bufpt - buf;
bufpt = buf;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if(flag_zeropad && !flag_leftjustify && length < width) {
int i;
int nPad = width - length;
for(i = width; i >= nPad; i--) {
bufpt[i] = bufpt[i - nPad];
}
i = prefix != 0;
while(nPad--) {
bufpt[i++] = '0';
}
length = width;
}
#else
bufpt = " ";
length = (int)sizeof(" ") - 1;
#endif /* SX_OMIT_FLOATINGPOINT */
break;
case SXFMT_SIZE: {
int *pSize = va_arg(ap, int *);
*pSize = ((SyFmtConsumer *)pUserData)->nLen;
length = width = 0;
}
break;
case SXFMT_PERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case SXFMT_CHARX:
c = va_arg(ap, int);
buf[0] = (char)c;
/* Limit the precision to prevent overflowing buf[] during conversion */
if(precision > SXFMT_BUFSIZ - 40) {
precision = SXFMT_BUFSIZ - 40;
}
if(precision >= 0) {
for(idx = 1; idx < precision; idx++) {
buf[idx] = (char)c;
}
length = precision;
} else {
length = 1;
}
bufpt = buf;
break;
case SXFMT_STRING:
bufpt = va_arg(ap, char *);
if(bufpt == 0) {
bufpt = " ";
length = (int)sizeof(" ") - 1;
break;
}
length = precision;
if(precision < 0) {
/* Symisc extension */
length = (int)SyStrlen(bufpt);
}
if(precision >= 0 && precision < length) {
length = precision;
}
break;
case SXFMT_RAWSTR: {
/* Symisc extension */
SyString *pStr = va_arg(ap, SyString *);
if(pStr == 0 || pStr->zString == 0) {
bufpt = " ";
length = (int)sizeof(char);
break;
}
bufpt = (char *)pStr->zString;
length = (int)pStr->nByte;
break;
}
case SXFMT_ERROR:
buf[0] = '?';
bufpt = buf;
length = (int)sizeof(char);
if(c == 0) {
zFormat--;
}
break;
}/* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long.The field width is "width".Do
** the output.
*/
if(!flag_leftjustify) {
register int nspace;
nspace = width - length;
if(nspace > 0) {
while(nspace >= etSPACESIZE) {
rc = xConsumer(spaces, etSPACESIZE, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
nspace -= etSPACESIZE;
}
if(nspace > 0) {
rc = xConsumer(spaces, (unsigned int)nspace, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
}
}
}
if(length > 0) {
rc = xConsumer(bufpt, (unsigned int)length, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
}
if(flag_leftjustify) {
register int nspace;
nspace = width - length;
if(nspace > 0) {
while(nspace >= etSPACESIZE) {
rc = xConsumer(spaces, etSPACESIZE, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
nspace -= etSPACESIZE;
}
if(nspace > 0) {
rc = xConsumer(spaces, (unsigned int)nspace, pUserData);
if(rc != SXRET_OK) {
return SXERR_ABORT; /* Consumer routine request an operation abort */
}
}
}
}
}/* End for loop over the format string */
return errorflag ? SXERR_FORMAT : SXRET_OK;
}
static sxi32 FormatConsumer(const void *pSrc, unsigned int nLen, void *pData) {
SyFmtConsumer *pConsumer = (SyFmtConsumer *)pData;
sxi32 rc = SXERR_ABORT;
switch(pConsumer->nType) {
case SXFMT_CONS_PROC:
/* User callback */
rc = pConsumer->uConsumer.sFunc.xUserConsumer(pSrc, nLen, pConsumer->uConsumer.sFunc.pUserData);
break;
case SXFMT_CONS_BLOB:
/* Blob consumer */
rc = SyBlobAppend(pConsumer->uConsumer.pBlob, pSrc, (sxu32)nLen);
break;
default:
/* Unknown consumer */
break;
}
/* Update total number of bytes consumed so far */
pConsumer->nLen += nLen;
pConsumer->rc = rc;
return rc;
}
static sxi32 FormatMount(sxi32 nType, void *pConsumer, ProcConsumer xUserCons, void *pUserData, sxu32 *pOutLen, const char *zFormat, va_list ap) {
SyFmtConsumer sCons;
sCons.nType = nType;
sCons.rc = SXRET_OK;
sCons.nLen = 0;
if(pOutLen) {
*pOutLen = 0;
}
switch(nType) {
case SXFMT_CONS_PROC:
#if defined(UNTRUST)
if(xUserCons == 0) {
return SXERR_EMPTY;
}
#endif
sCons.uConsumer.sFunc.xUserConsumer = xUserCons;
sCons.uConsumer.sFunc.pUserData = pUserData;
break;
case SXFMT_CONS_BLOB:
sCons.uConsumer.pBlob = (SyBlob *)pConsumer;
break;
default:
return SXERR_UNKNOWN;
}
InternFormat(FormatConsumer, &sCons, zFormat, ap);
if(pOutLen) {
*pOutLen = sCons.nLen;
}
return sCons.rc;
}
PH7_PRIVATE sxi32 SyProcFormat(ProcConsumer xConsumer, void *pData, const char *zFormat, ...) {
va_list ap;
sxi32 rc;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zFormat)) {
return SXERR_EMPTY;
}
#endif
va_start(ap, zFormat);
rc = FormatMount(SXFMT_CONS_PROC, 0, xConsumer, pData, 0, zFormat, ap);
va_end(ap);
return rc;
}
PH7_PRIVATE sxu32 SyBlobFormat(SyBlob *pBlob, const char *zFormat, ...) {
va_list ap;
sxu32 n;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zFormat)) {
return 0;
}
#endif
va_start(ap, zFormat);
FormatMount(SXFMT_CONS_BLOB, &(*pBlob), 0, 0, &n, zFormat, ap);
va_end(ap);
return n;
}
PH7_PRIVATE sxu32 SyBlobFormatAp(SyBlob *pBlob, const char *zFormat, va_list ap) {
sxu32 n = 0; /* cc warning */
#if defined(UNTRUST)
if(SX_EMPTY_STR(zFormat)) {
return 0;
}
#endif
FormatMount(SXFMT_CONS_BLOB, &(*pBlob), 0, 0, &n, zFormat, ap);
return n;
}
PH7_PRIVATE sxu32 SyBufferFormat(char *zBuf, sxu32 nLen, const char *zFormat, ...) {
SyBlob sBlob;
va_list ap;
sxu32 n;
#if defined(UNTRUST)
if(SX_EMPTY_STR(zFormat)) {
return 0;
}
#endif
if(SXRET_OK != SyBlobInitFromBuf(&sBlob, zBuf, nLen - 1)) {
return 0;
}
va_start(ap, zFormat);
FormatMount(SXFMT_CONS_BLOB, &sBlob, 0, 0, 0, zFormat, ap);
va_end(ap);
n = SyBlobLength(&sBlob);
/* Append the null terminator */
sBlob.mByte++;
SyBlobAppend(&sBlob, "\0", sizeof(char));
return n;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
/*
* Zip File Format:
*
* Byte order: Little-endian
*
* [Local file header + Compressed data [+ Extended local header]?]*
* [Central directory]*
* [End of central directory record]
*
* Local file header:*
* Offset Length Contents
* 0 4 bytes Local file header signature (0x04034b50)
* 4 2 bytes Version needed to extract
* 6 2 bytes General purpose bit flag
* 8 2 bytes Compression method
* 10 2 bytes Last mod file time
* 12 2 bytes Last mod file date
* 14 4 bytes CRC-32
* 18 4 bytes Compressed size (n)
* 22 4 bytes Uncompressed size
* 26 2 bytes Filename length (f)
* 28 2 bytes Extra field length (e)
* 30 (f)bytes Filename
* (e)bytes Extra field
* (n)bytes Compressed data
*
* Extended local header:*
* Offset Length Contents
* 0 4 bytes Extended Local file header signature (0x08074b50)
* 4 4 bytes CRC-32
* 8 4 bytes Compressed size
* 12 4 bytes Uncompressed size
*
* Extra field:?(if any)
* Offset Length Contents
* 0 2 bytes Header ID (0x001 until 0xfb4a) see extended appnote from Info-zip
* 2 2 bytes Data size (g)
* (g) bytes (g) bytes of extra field
*
* Central directory:*
* Offset Length Contents
* 0 4 bytes Central file header signature (0x02014b50)
* 4 2 bytes Version made by
* 6 2 bytes Version needed to extract
* 8 2 bytes General purpose bit flag
* 10 2 bytes Compression method
* 12 2 bytes Last mod file time
* 14 2 bytes Last mod file date
* 16 4 bytes CRC-32
* 20 4 bytes Compressed size
* 24 4 bytes Uncompressed size
* 28 2 bytes Filename length (f)
* 30 2 bytes Extra field length (e)
* 32 2 bytes File comment length (c)
* 34 2 bytes Disk number start
* 36 2 bytes Internal file attributes
* 38 4 bytes External file attributes
* 42 4 bytes Relative offset of local header
* 46 (f)bytes Filename
* (e)bytes Extra field
* (c)bytes File comment
*
* End of central directory record:
* Offset Length Contents
* 0 4 bytes End of central dir signature (0x06054b50)
* 4 2 bytes Number of this disk
* 6 2 bytes Number of the disk with the start of the central directory
* 8 2 bytes Total number of entries in the central dir on this disk
* 10 2 bytes Total number of entries in the central dir
* 12 4 bytes Size of the central directory
* 16 4 bytes Offset of start of central directory with respect to the starting disk number
* 20 2 bytes zipfile comment length (c)
* 22 (c)bytes zipfile comment
*
* compression method: (2 bytes)
* 0 - The file is stored (no compression)
* 1 - The file is Shrunk
* 2 - The file is Reduced with compression factor 1
* 3 - The file is Reduced with compression factor 2
* 4 - The file is Reduced with compression factor 3
* 5 - The file is Reduced with compression factor 4
* 6 - The file is Imploded
* 7 - Reserved for Tokenizing compression algorithm
* 8 - The file is Deflated
*/
#define SXMAKE_ZIP_WORKBUF (SXU16_HIGH/2) /* 32KB Initial working buffer size */
#define SXMAKE_ZIP_EXTRACT_VER 0x000a /* Version needed to extract */
#define SXMAKE_ZIP_VER 0x003 /* Version made by */
#define SXZIP_CENTRAL_MAGIC 0x02014b50
#define SXZIP_END_CENTRAL_MAGIC 0x06054b50
#define SXZIP_LOCAL_MAGIC 0x04034b50
/*#define SXZIP_CRC32_START 0xdebb20e3*/
#define SXZIP_LOCAL_HDRSZ 30 /* Local header size */
#define SXZIP_LOCAL_EXT_HDRZ 16 /* Extended local header(footer) size */
#define SXZIP_CENTRAL_HDRSZ 46 /* Central directory header size */
#define SXZIP_END_CENTRAL_HDRSZ 22 /* End of central directory header size */
#define SXARCHIVE_HASH_SIZE 64 /* Starting hash table size(MUST BE POWER OF 2)*/
static sxi32 SyLittleEndianUnpack32(sxu32 *uNB, const unsigned char *buf, sxu32 Len) {
if(Len < sizeof(sxu32)) {
return SXERR_SHORT;
}
*uNB = buf[0] + (buf[1] << 8) + (buf[2] << 16) + (buf[3] << 24);
return SXRET_OK;
}
static sxi32 SyLittleEndianUnpack16(sxu16 *pOut, const unsigned char *zBuf, sxu32 nLen) {
if(nLen < sizeof(sxu16)) {
return SXERR_SHORT;
}
*pOut = zBuf[0] + (zBuf[1] << 8);
return SXRET_OK;
}
static sxi32 SyDosTimeFormat(sxu32 nDosDate, Sytm *pOut) {
sxu16 nDate;
sxu16 nTime;
nDate = nDosDate >> 16;
nTime = nDosDate & 0xFFFF;
pOut->tm_isdst = 0;
pOut->tm_year = 1980 + (nDate >> 9);
pOut->tm_mon = (nDate % (1 << 9)) >> 5;
pOut->tm_mday = (nDate % (1 << 9)) & 0x1F;
pOut->tm_hour = nTime >> 11;
pOut->tm_min = (nTime % (1 << 11)) >> 5;
pOut->tm_sec = ((nTime % (1 << 11)) & 0x1F) << 1;
return SXRET_OK;
}
/*
* Archive hashtable manager
*/
static sxi32 ArchiveHashGetEntry(SyArchive *pArch, const char *zName, sxu32 nLen, SyArchiveEntry **ppEntry) {
SyArchiveEntry *pBucketEntry;
SyString sEntry;
sxu32 nHash;
nHash = pArch->xHash(zName, nLen);
pBucketEntry = pArch->apHash[nHash & (pArch->nSize - 1)];
SyStringInitFromBuf(&sEntry, zName, nLen);
for(;;) {
if(pBucketEntry == 0) {
break;
}
if(nHash == pBucketEntry->nHash && pArch->xCmp(&sEntry, &pBucketEntry->sFileName) == 0) {
if(ppEntry) {
*ppEntry = pBucketEntry;
}
return SXRET_OK;
}
pBucketEntry = pBucketEntry->pNextHash;
}
return SXERR_NOTFOUND;
}
static void ArchiveHashBucketInstall(SyArchiveEntry **apTable, sxu32 nBucket, SyArchiveEntry *pEntry) {
pEntry->pNextHash = apTable[nBucket];
if(apTable[nBucket] != 0) {
apTable[nBucket]->pPrevHash = pEntry;
}
apTable[nBucket] = pEntry;
}
static sxi32 ArchiveHashGrowTable(SyArchive *pArch) {
sxu32 nNewSize = pArch->nSize * 2;
SyArchiveEntry **apNew;
SyArchiveEntry *pEntry;
sxu32 n;
/* Allocate a new table */
apNew = (SyArchiveEntry **)SyMemBackendAlloc(pArch->pAllocator, nNewSize * sizeof(SyArchiveEntry *));
if(apNew == 0) {
return SXRET_OK; /* Not so fatal,simply a performance hit */
}
SyZero(apNew, nNewSize * sizeof(SyArchiveEntry *));
/* Rehash old entries */
for(n = 0, pEntry = pArch->pList ; n < pArch->nLoaded ; n++, pEntry = pEntry->pNext) {
pEntry->pNextHash = pEntry->pPrevHash = 0;
ArchiveHashBucketInstall(apNew, pEntry->nHash & (nNewSize - 1), pEntry);
}
/* Release the old table */
SyMemBackendFree(pArch->pAllocator, pArch->apHash);
pArch->apHash = apNew;
pArch->nSize = nNewSize;
return SXRET_OK;
}
static sxi32 ArchiveHashInstallEntry(SyArchive *pArch, SyArchiveEntry *pEntry) {
if(pArch->nLoaded > pArch->nSize * 3) {
ArchiveHashGrowTable(&(*pArch));
}
pEntry->nHash = pArch->xHash(SyStringData(&pEntry->sFileName), SyStringLength(&pEntry->sFileName));
/* Install the entry in its bucket */
ArchiveHashBucketInstall(pArch->apHash, pEntry->nHash & (pArch->nSize - 1), pEntry);
MACRO_LD_PUSH(pArch->pList, pEntry);
pArch->nLoaded++;
return SXRET_OK;
}
/*
* Parse the End of central directory and report status
*/
static sxi32 ParseEndOfCentralDirectory(SyArchive *pArch, const unsigned char *zBuf) {
sxu32 nMagic = 0; /* cc -O6 warning */
sxi32 rc;
/* Sanity check */
rc = SyLittleEndianUnpack32(&nMagic, zBuf, sizeof(sxu32));
if(/* rc != SXRET_OK || */nMagic != SXZIP_END_CENTRAL_MAGIC) {
return SXERR_CORRUPT;
}
/* # of entries */
rc = SyLittleEndianUnpack16((sxu16 *)&pArch->nEntry, &zBuf[8], sizeof(sxu16));
if(/* rc != SXRET_OK || */ pArch->nEntry > SXI16_HIGH /* SXU16_HIGH */) {
return SXERR_CORRUPT;
}
/* Size of central directory */
rc = SyLittleEndianUnpack32(&pArch->nCentralSize, &zBuf[12], sizeof(sxu32));
if(/*rc != SXRET_OK ||*/ pArch->nCentralSize > SXI32_HIGH) {
return SXERR_CORRUPT;
}
/* Starting offset of central directory */
rc = SyLittleEndianUnpack32(&pArch->nCentralOfft, &zBuf[16], sizeof(sxu32));
if(/*rc != SXRET_OK ||*/ pArch->nCentralSize > SXI32_HIGH) {
return SXERR_CORRUPT;
}
return SXRET_OK;
}
/*
* Fill the zip entry with the appropriate information from the central directory
*/
static sxi32 GetCentralDirectoryEntry(SyArchive *pArch, SyArchiveEntry *pEntry, const unsigned char *zCentral, sxu32 *pNextOffset) {
SyString *pName = &pEntry->sFileName; /* File name */
sxu16 nDosDate, nDosTime;
sxu16 nComment = 0 ;
sxu32 nMagic = 0; /* cc -O6 warning */
sxi32 rc;
nDosDate = nDosTime = 0; /* cc -O6 warning */
SXUNUSED(pArch);
/* Sanity check */
rc = SyLittleEndianUnpack32(&nMagic, zCentral, sizeof(sxu32));
if(/* rc != SXRET_OK || */ nMagic != SXZIP_CENTRAL_MAGIC) {
rc = SXERR_CORRUPT;
/*
* Try to recover by examing the next central directory record.
* Dont worry here,there is no risk of an infinite loop since
* the buffer size is delimited.
*/
/* pName->nByte = 0; nComment = 0; pName->nExtra = 0 */
goto update;
}
/*
* entry name length
*/
SyLittleEndianUnpack16((sxu16 *)&pName->nByte, &zCentral[28], sizeof(sxu16));
if(pName->nByte > SXI16_HIGH /* SXU16_HIGH */) {
rc = SXERR_BIG;
goto update;
}
/* Extra information */
SyLittleEndianUnpack16(&pEntry->nExtra, &zCentral[30], sizeof(sxu16));
/* Comment length */
SyLittleEndianUnpack16(&nComment, &zCentral[32], sizeof(sxu16));
/* Compression method 0 == stored / 8 == deflated */
rc = SyLittleEndianUnpack16(&pEntry->nComprMeth, &zCentral[10], sizeof(sxu16));
/* DOS Timestamp */
SyLittleEndianUnpack16(&nDosTime, &zCentral[12], sizeof(sxu16));
SyLittleEndianUnpack16(&nDosDate, &zCentral[14], sizeof(sxu16));
SyDosTimeFormat((nDosDate << 16 | nDosTime), &pEntry->sFmt);
/* Little hack to fix month index */
pEntry->sFmt.tm_mon--;
/* CRC32 */
rc = SyLittleEndianUnpack32(&pEntry->nCrc, &zCentral[16], sizeof(sxu32));
/* Content size before compression */
rc = SyLittleEndianUnpack32(&pEntry->nByte, &zCentral[24], sizeof(sxu32));
if(pEntry->nByte > SXI32_HIGH) {
rc = SXERR_BIG;
goto update;
}
/*
* Content size after compression.
* Note that if the file is stored pEntry->nByte should be equal to pEntry->nByteCompr
*/
rc = SyLittleEndianUnpack32(&pEntry->nByteCompr, &zCentral[20], sizeof(sxu32));
if(pEntry->nByteCompr > SXI32_HIGH) {
rc = SXERR_BIG;
goto update;
}
/* Finally grab the contents offset */
SyLittleEndianUnpack32(&pEntry->nOfft, &zCentral[42], sizeof(sxu32));
if(pEntry->nOfft > SXI32_HIGH) {
rc = SXERR_BIG;
goto update;
}
rc = SXRET_OK;
update:
/* Update the offset to point to the next central directory record */
*pNextOffset = SXZIP_CENTRAL_HDRSZ + pName->nByte + pEntry->nExtra + nComment;
return rc; /* Report failure or success */
}
static sxi32 ZipFixOffset(SyArchiveEntry *pEntry, void *pSrc) {
sxu16 nExtra, nNameLen;
unsigned char *zHdr;
nExtra = nNameLen = 0;
zHdr = (unsigned char *)pSrc;
zHdr = &zHdr[pEntry->nOfft];
if(SyMemcmp(zHdr, "PK\003\004", sizeof(sxu32)) != 0) {
return SXERR_CORRUPT;
}
SyLittleEndianUnpack16(&nNameLen, &zHdr[26], sizeof(sxu16));
SyLittleEndianUnpack16(&nExtra, &zHdr[28], sizeof(sxu16));
/* Fix contents offset */
pEntry->nOfft += SXZIP_LOCAL_HDRSZ + nExtra + nNameLen;
return SXRET_OK;
}
/*
* Extract all valid entries from the central directory
*/
static sxi32 ZipExtract(SyArchive *pArch, const unsigned char *zCentral, sxu32 nLen, void *pSrc) {
SyArchiveEntry *pEntry, *pDup;
const unsigned char *zEnd ; /* End of central directory */
sxu32 nIncr, nOfft; /* Central Offset */
SyString *pName; /* Entry name */
char *zName;
sxi32 rc;
nOfft = nIncr = 0;
zEnd = &zCentral[nLen];
for(;;) {
if(&zCentral[nOfft] >= zEnd) {
break;
}
/* Add a new entry */
pEntry = (SyArchiveEntry *)SyMemBackendPoolAlloc(pArch->pAllocator, sizeof(SyArchiveEntry));
if(pEntry == 0) {
break;
}
SyZero(pEntry, sizeof(SyArchiveEntry));
pEntry->nMagic = SXARCH_MAGIC;
nIncr = 0;
rc = GetCentralDirectoryEntry(&(*pArch), pEntry, &zCentral[nOfft], &nIncr);
if(rc == SXRET_OK) {
/* Fix the starting record offset so we can access entry contents correctly */
rc = ZipFixOffset(pEntry, pSrc);
}
if(rc != SXRET_OK) {
sxu32 nJmp = 0;
SyMemBackendPoolFree(pArch->pAllocator, pEntry);
/* Try to recover by brute-forcing for a valid central directory record */
if(SXRET_OK == SyBlobSearch((const void *)&zCentral[nOfft + nIncr], (sxu32)(zEnd - &zCentral[nOfft + nIncr]),
(const void *)"PK\001\002", sizeof(sxu32), &nJmp)) {
nOfft += nIncr + nJmp; /* Check next entry */
continue;
}
break; /* Giving up,archive is hopelessly corrupted */
}
pName = &pEntry->sFileName;
pName->zString = (const char *)&zCentral[nOfft + SXZIP_CENTRAL_HDRSZ];
if(pName->nByte <= 0 || (pEntry->nByte <= 0 && pName->zString[pName->nByte - 1] != '/')) {
/* Ignore zero length records (except folders) and records without names */
SyMemBackendPoolFree(pArch->pAllocator, pEntry);
nOfft += nIncr; /* Check next entry */
continue;
}
zName = SyMemBackendStrDup(pArch->pAllocator, pName->zString, pName->nByte);
if(zName == 0) {
SyMemBackendPoolFree(pArch->pAllocator, pEntry);
nOfft += nIncr; /* Check next entry */
continue;
}
pName->zString = (const char *)zName;
/* Check for duplicates */
rc = ArchiveHashGetEntry(&(*pArch), pName->zString, pName->nByte, &pDup);
if(rc == SXRET_OK) {
/* Another entry with the same name exists ; link them together */
pEntry->pNextName = pDup->pNextName;
pDup->pNextName = pEntry;
pDup->nDup++;
} else {
/* Insert in hashtable */
ArchiveHashInstallEntry(pArch, pEntry);
}
nOfft += nIncr; /* Check next record */
}
pArch->pCursor = pArch->pList;
return pArch->nLoaded > 0 ? SXRET_OK : SXERR_EMPTY;
}
PH7_PRIVATE sxi32 SyZipExtractFromBuf(SyArchive *pArch, const char *zBuf, sxu32 nLen) {
const unsigned char *zCentral, *zEnd;
sxi32 rc;
#if defined(UNTRUST)
if(SXARCH_INVALID(pArch) || zBuf == 0) {
return SXERR_INVALID;
}
#endif
/* The miminal size of a zip archive:
* LOCAL_HDR_SZ + CENTRAL_HDR_SZ + END_OF_CENTRAL_HDR_SZ
* 30 46 22
*/
if(nLen < SXZIP_LOCAL_HDRSZ + SXZIP_CENTRAL_HDRSZ + SXZIP_END_CENTRAL_HDRSZ) {
return SXERR_CORRUPT; /* Don't bother processing return immediately */
}
zEnd = (unsigned char *)&zBuf[nLen - SXZIP_END_CENTRAL_HDRSZ];
/* Find the end of central directory */
while(((sxu32)((unsigned char *)&zBuf[nLen] - zEnd) < (SXZIP_END_CENTRAL_HDRSZ + SXI16_HIGH)) &&
zEnd > (unsigned char *)zBuf && SyMemcmp(zEnd, "PK\005\006", sizeof(sxu32)) != 0) {
zEnd--;
}
/* Parse the end of central directory */
rc = ParseEndOfCentralDirectory(&(*pArch), zEnd);
if(rc != SXRET_OK) {
return rc;
}
/* Find the starting offset of the central directory */
zCentral = &zEnd[-(sxi32)pArch->nCentralSize];
if(zCentral <= (unsigned char *)zBuf || SyMemcmp(zCentral, "PK\001\002", sizeof(sxu32)) != 0) {
if(pArch->nCentralOfft >= nLen) {
/* Corrupted central directory offset */
return SXERR_CORRUPT;
}
zCentral = (unsigned char *)&zBuf[pArch->nCentralOfft];
if(SyMemcmp(zCentral, "PK\001\002", sizeof(sxu32)) != 0) {
/* Corrupted zip archive */
return SXERR_CORRUPT;
}
/* Fall thru and extract all valid entries from the central directory */
}
rc = ZipExtract(&(*pArch), zCentral, (sxu32)(zEnd - zCentral), (void *)zBuf);
return rc;
}
/*
* Default comparison function.
*/
static sxi32 ArchiveHashCmp(const SyString *pStr1, const SyString *pStr2) {
sxi32 rc;
rc = SyStringCmp(pStr1, pStr2, SyMemcmp);
return rc;
}
PH7_PRIVATE sxi32 SyArchiveInit(SyArchive *pArch, SyMemBackend *pAllocator, ProcHash xHash, ProcRawStrCmp xCmp) {
SyArchiveEntry **apHash;
#if defined(UNTRUST)
if(pArch == 0) {
return SXERR_EMPTY;
}
#endif
SyZero(pArch, sizeof(SyArchive));
/* Allocate a new hashtable */
apHash = (SyArchiveEntry **)SyMemBackendAlloc(&(*pAllocator), SXARCHIVE_HASH_SIZE * sizeof(SyArchiveEntry *));
if(apHash == 0) {
return SXERR_MEM;
}
SyZero(apHash, SXARCHIVE_HASH_SIZE * sizeof(SyArchiveEntry *));
pArch->apHash = apHash;
pArch->xHash = xHash ? xHash : SyBinHash;
pArch->xCmp = xCmp ? xCmp : ArchiveHashCmp;
pArch->nSize = SXARCHIVE_HASH_SIZE;
pArch->pAllocator = &(*pAllocator);
pArch->nMagic = SXARCH_MAGIC;
return SXRET_OK;
}
static sxi32 ArchiveReleaseEntry(SyMemBackend *pAllocator, SyArchiveEntry *pEntry) {
SyArchiveEntry *pDup = pEntry->pNextName;
SyArchiveEntry *pNextDup;
/* Release duplicates first since there are not stored in the hashtable */
for(;;) {
if(pEntry->nDup == 0) {
break;
}
pNextDup = pDup->pNextName;
pDup->nMagic = 0x2661;
SyMemBackendFree(pAllocator, (void *)SyStringData(&pDup->sFileName));
SyMemBackendPoolFree(pAllocator, pDup);
pDup = pNextDup;
pEntry->nDup--;
}
pEntry->nMagic = 0x2661;
SyMemBackendFree(pAllocator, (void *)SyStringData(&pEntry->sFileName));
SyMemBackendPoolFree(pAllocator, pEntry);
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyArchiveRelease(SyArchive *pArch) {
SyArchiveEntry *pEntry, *pNext;
pEntry = pArch->pList;
for(;;) {
if(pArch->nLoaded < 1) {
break;
}
pNext = pEntry->pNext;
MACRO_LD_REMOVE(pArch->pList, pEntry);
ArchiveReleaseEntry(pArch->pAllocator, pEntry);
pEntry = pNext;
pArch->nLoaded--;
}
SyMemBackendFree(pArch->pAllocator, pArch->apHash);
pArch->pCursor = 0;
pArch->nMagic = 0x2626;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyArchiveResetLoopCursor(SyArchive *pArch) {
pArch->pCursor = pArch->pList;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyArchiveGetNextEntry(SyArchive *pArch, SyArchiveEntry **ppEntry) {
SyArchiveEntry *pNext;
if(pArch->pCursor == 0) {
/* Rewind the cursor */
pArch->pCursor = pArch->pList;
return SXERR_EOF;
}
*ppEntry = pArch->pCursor;
pNext = pArch->pCursor->pNext;
/* Advance the cursor to the next entry */
pArch->pCursor = pNext;
return SXRET_OK;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */
/*
* Psuedo Random Number Generator (PRNG)
* @authors: SQLite authors <http://www.sqlite.org/>
* @status: Public Domain
* NOTE:
* Nothing in this file or anywhere else in the library does any kind of
* encryption.The RC4 algorithm is being used as a PRNG (pseudo-random
* number generator) not as an encryption device.
*/
#define SXPRNG_MAGIC 0x13C4
#ifdef __UNIXES__
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/time.h>
#endif
static sxi32 SyOSUtilRandomSeed(void *pBuf, sxu32 nLen, void *pUnused) {
char *zBuf = (char *)pBuf;
#ifdef __WINNT__
DWORD nProcessID; /* Yes,keep it uninitialized when compiling using the MinGW32 builds tools */
#elif defined(__UNIXES__)
pid_t pid;
int fd;
#else
char zGarbage[128]; /* Yes,keep this buffer uninitialized */
#endif
SXUNUSED(pUnused);
#ifdef __WINNT__
#ifndef __MINGW32__
nProcessID = GetProcessId(GetCurrentProcess());
#endif
SyMemcpy((const void *)&nProcessID, zBuf, SXMIN(nLen, sizeof(DWORD)));
if((sxu32)(&zBuf[nLen] - &zBuf[sizeof(DWORD)]) >= sizeof(SYSTEMTIME)) {
GetSystemTime((LPSYSTEMTIME)&zBuf[sizeof(DWORD)]);
}
#elif defined(__UNIXES__)
fd = open("/dev/urandom", O_RDONLY);
if(fd >= 0) {
if(read(fd, zBuf, nLen) > 0) {
close(fd);
return SXRET_OK;
}
/* FALL THRU */
}
close(fd);
pid = getpid();
SyMemcpy((const void *)&pid, zBuf, SXMIN(nLen, sizeof(pid_t)));
if(&zBuf[nLen] - &zBuf[sizeof(pid_t)] >= (int)sizeof(struct timeval)) {
gettimeofday((struct timeval *)&zBuf[sizeof(pid_t)], 0);
}
#else
/* Fill with uninitialized data */
SyMemcpy(zGarbage, zBuf, SXMIN(nLen, sizeof(zGarbage)));
#endif
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyRandomnessInit(SyPRNGCtx *pCtx, ProcRandomSeed xSeed, void *pUserData) {
char zSeed[256];
sxu8 t;
sxi32 rc;
sxu32 i;
if(pCtx->nMagic == SXPRNG_MAGIC) {
return SXRET_OK; /* Already initialized */
}
/* Initialize the state of the random number generator once,
** the first time this routine is called.The seed value does
** not need to contain a lot of randomness since we are not
** trying to do secure encryption or anything like that...
*/
if(xSeed == 0) {
xSeed = SyOSUtilRandomSeed;
}
rc = xSeed(zSeed, sizeof(zSeed), pUserData);
if(rc != SXRET_OK) {
return rc;
}
pCtx->i = pCtx->j = 0;
for(i = 0; i < SX_ARRAYSIZE(pCtx->s) ; i++) {
pCtx->s[i] = (unsigned char)i;
}
for(i = 0; i < sizeof(zSeed) ; i++) {
pCtx->j += pCtx->s[i] + zSeed[i];
t = pCtx->s[pCtx->j];
pCtx->s[pCtx->j] = pCtx->s[i];
pCtx->s[i] = t;
}
pCtx->nMagic = SXPRNG_MAGIC;
return SXRET_OK;
}
/*
* Get a single 8-bit random value using the RC4 PRNG.
*/
static sxu8 randomByte(SyPRNGCtx *pCtx) {
sxu8 t;
/* Generate and return single random byte */
pCtx->i++;
t = pCtx->s[pCtx->i];
pCtx->j += t;
pCtx->s[pCtx->i] = pCtx->s[pCtx->j];
pCtx->s[pCtx->j] = t;
t += pCtx->s[pCtx->i];
return pCtx->s[t];
}
PH7_PRIVATE sxi32 SyRandomness(SyPRNGCtx *pCtx, void *pBuf, sxu32 nLen) {
unsigned char *zBuf = (unsigned char *)pBuf;
unsigned char *zEnd = &zBuf[nLen];
#if defined(UNTRUST)
if(pCtx == 0 || pBuf == 0 || nLen <= 0) {
return SXERR_EMPTY;
}
#endif
if(pCtx->nMagic != SXPRNG_MAGIC) {
return SXERR_CORRUPT;
}
for(;;) {
if(zBuf >= zEnd) {
break;
}
zBuf[0] = randomByte(pCtx);
zBuf++;
if(zBuf >= zEnd) {
break;
}
zBuf[0] = randomByte(pCtx);
zBuf++;
if(zBuf >= zEnd) {
break;
}
zBuf[0] = randomByte(pCtx);
zBuf++;
if(zBuf >= zEnd) {
break;
}
zBuf[0] = randomByte(pCtx);
zBuf++;
}
return SXRET_OK;
}
#ifndef PH7_DISABLE_BUILTIN_FUNC
#ifndef PH7_DISABLE_HASH_FUNC
/* SyRunTimeApi: sxhash.c */
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest.This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
#define SX_MD5_BINSZ 16
#define SX_MD5_HEXSZ 32
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse(unsigned char *buf, unsigned longs) {
sxu32 t;
do {
t = (sxu32)((unsigned)buf[3] << 8 | buf[2]) << 16 |
((unsigned)buf[1] << 8 | buf[0]);
*(sxu32 *)buf = t;
buf += 4;
} while(--longs);
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#ifdef F1
#undef F1
#endif
#ifdef F2
#undef F2
#endif
#ifdef F3
#undef F3
#endif
#ifdef F4
#undef F4
#endif
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm.*/
#define SX_MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data.MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(sxu32 buf[4], const sxu32 in[16]) {
register sxu32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
SX_MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
SX_MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
SX_MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
SX_MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
SX_MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
SX_MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
SX_MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
SX_MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
SX_MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
SX_MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
SX_MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
SX_MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
SX_MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
SX_MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
SX_MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
SX_MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
SX_MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
SX_MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
SX_MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
SX_MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
SX_MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
SX_MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
SX_MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
SX_MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
SX_MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
SX_MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
SX_MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
SX_MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
SX_MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
SX_MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
SX_MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
SX_MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
SX_MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
SX_MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
SX_MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
SX_MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
SX_MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
SX_MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
SX_MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
SX_MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
SX_MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
SX_MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
SX_MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
SX_MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
SX_MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
SX_MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
SX_MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
SX_MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23);
SX_MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
SX_MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10);
SX_MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
SX_MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21);
SX_MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
SX_MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10);
SX_MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
SX_MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21);
SX_MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6);
SX_MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
SX_MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15);
SX_MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
SX_MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6);
SX_MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
SX_MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15);
SX_MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
PH7_PRIVATE void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len) {
sxu32 t;
/* Update bitcount */
t = ctx->bits[0];
if((ctx->bits[0] = t + ((sxu32)len << 3)) < t) {
ctx->bits[1]++; /* Carry from low to high */
}
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if(t) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64 - t;
if(len < t) {
SyMemcpy(buf, p, len);
return;
}
SyMemcpy(buf, p, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (sxu32 *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while(len >= 64) {
SyMemcpy(buf, ctx->in, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (sxu32 *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data.*/
SyMemcpy(buf, ctx->in, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
PH7_PRIVATE void MD5Final(unsigned char digest[16], MD5Context *ctx) {
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80.This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if(count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
SyZero(p, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (sxu32 *)ctx->in);
/* Now fill the next block with 56 bytes */
SyZero(ctx->in, 56);
} else {
/* Pad block to 56 bytes */
SyZero(p, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((sxu32 *)ctx->in)[ 14 ] = ctx->bits[0];
((sxu32 *)ctx->in)[ 15 ] = ctx->bits[1];
MD5Transform(ctx->buf, (sxu32 *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
SyMemcpy(ctx->buf, digest, 0x10);
SyZero(ctx, sizeof(ctx)); /* In case it's sensitive */
}
#undef F1
#undef F2
#undef F3
#undef F4
PH7_PRIVATE sxi32 MD5Init(MD5Context *pCtx) {
pCtx->buf[0] = 0x67452301;
pCtx->buf[1] = 0xefcdab89;
pCtx->buf[2] = 0x98badcfe;
pCtx->buf[3] = 0x10325476;
pCtx->bits[0] = 0;
pCtx->bits[1] = 0;
return SXRET_OK;
}
PH7_PRIVATE sxi32 SyMD5Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[16]) {
MD5Context sCtx;
MD5Init(&sCtx);
MD5Update(&sCtx, (const unsigned char *)pIn, nLen);
MD5Final(zDigest, &sCtx);
return SXRET_OK;
}
/*
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* Status: Public Domain
*/
/*
* blk0() and blk() perform the initial expand.
* I got the idea of expanding during the round function from SSLeay
*
* blk0le() for little-endian and blk0be() for big-endian.
*/
#if __GNUC__ && (defined(__i386__) || defined(__x86_64__))
/*
* GCC by itself only generates left rotates. Use right rotates if
* possible to be kinder to dinky implementations with iterative rotate
* instructions.
*/
#define SHA_ROT(op, x, k) \
({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; })
#define rol(x,k) SHA_ROT("roll", x, k)
#define ror(x,k) SHA_ROT("rorl", x, k)
#else
/* Generic C equivalent */
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#endif
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
^block[(i+2)&15]^block[i&15],1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]) {
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
SyMemcpy(buffer, (void *)block, 64);
SyMemcpy(state, qq, 5 * sizeof(unsigned int));
/* Copy context->state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if(1 == *(unsigned char *)&one) {
Rl0(a, b, c, d, e, 0);
Rl0(e, a, b, c, d, 1);
Rl0(d, e, a, b, c, 2);
Rl0(c, d, e, a, b, 3);
Rl0(b, c, d, e, a, 4);
Rl0(a, b, c, d, e, 5);
Rl0(e, a, b, c, d, 6);
Rl0(d, e, a, b, c, 7);
Rl0(c, d, e, a, b, 8);
Rl0(b, c, d, e, a, 9);
Rl0(a, b, c, d, e, 10);
Rl0(e, a, b, c, d, 11);
Rl0(d, e, a, b, c, 12);
Rl0(c, d, e, a, b, 13);
Rl0(b, c, d, e, a, 14);
Rl0(a, b, c, d, e, 15);
} else {
Rb0(a, b, c, d, e, 0);
Rb0(e, a, b, c, d, 1);
Rb0(d, e, a, b, c, 2);
Rb0(c, d, e, a, b, 3);
Rb0(b, c, d, e, a, 4);
Rb0(a, b, c, d, e, 5);
Rb0(e, a, b, c, d, 6);
Rb0(d, e, a, b, c, 7);
Rb0(c, d, e, a, b, 8);
Rb0(b, c, d, e, a, 9);
Rb0(a, b, c, d, e, 10);
Rb0(e, a, b, c, d, 11);
Rb0(d, e, a, b, c, 12);
Rb0(c, d, e, a, b, 13);
Rb0(b, c, d, e, a, 14);
Rb0(a, b, c, d, e, 15);
}
R1(e, a, b, c, d, 16);
R1(d, e, a, b, c, 17);
R1(c, d, e, a, b, 18);
R1(b, c, d, e, a, 19);
R2(a, b, c, d, e, 20);
R2(e, a, b, c, d, 21);
R2(d, e, a, b, c, 22);
R2(c, d, e, a, b, 23);
R2(b, c, d, e, a, 24);
R2(a, b, c, d, e, 25);
R2(e, a, b, c, d, 26);
R2(d, e, a, b, c, 27);
R2(c, d, e, a, b, 28);
R2(b, c, d, e, a, 29);
R2(a, b, c, d, e, 30);
R2(e, a, b, c, d, 31);
R2(d, e, a, b, c, 32);
R2(c, d, e, a, b, 33);
R2(b, c, d, e, a, 34);
R2(a, b, c, d, e, 35);
R2(e, a, b, c, d, 36);
R2(d, e, a, b, c, 37);
R2(c, d, e, a, b, 38);
R2(b, c, d, e, a, 39);
R3(a, b, c, d, e, 40);
R3(e, a, b, c, d, 41);
R3(d, e, a, b, c, 42);
R3(c, d, e, a, b, 43);
R3(b, c, d, e, a, 44);
R3(a, b, c, d, e, 45);
R3(e, a, b, c, d, 46);
R3(d, e, a, b, c, 47);
R3(c, d, e, a, b, 48);
R3(b, c, d, e, a, 49);
R3(a, b, c, d, e, 50);
R3(e, a, b, c, d, 51);
R3(d, e, a, b, c, 52);
R3(c, d, e, a, b, 53);
R3(b, c, d, e, a, 54);
R3(a, b, c, d, e, 55);
R3(e, a, b, c, d, 56);
R3(d, e, a, b, c, 57);
R3(c, d, e, a, b, 58);
R3(b, c, d, e, a, 59);
R4(a, b, c, d, e, 60);
R4(e, a, b, c, d, 61);
R4(d, e, a, b, c, 62);
R4(c, d, e, a, b, 63);
R4(b, c, d, e, a, 64);
R4(a, b, c, d, e, 65);
R4(e, a, b, c, d, 66);
R4(d, e, a, b, c, 67);
R4(c, d, e, a, b, 68);
R4(b, c, d, e, a, 69);
R4(a, b, c, d, e, 70);
R4(e, a, b, c, d, 71);
R4(d, e, a, b, c, 72);
R4(c, d, e, a, b, 73);
R4(b, c, d, e, a, 74);
R4(a, b, c, d, e, 75);
R4(e, a, b, c, d, 76);
R4(d, e, a, b, c, 77);
R4(c, d, e, a, b, 78);
R4(b, c, d, e, a, 79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
#undef a
#undef b
#undef c
#undef d
#undef e
/*
* SHA1Init - Initialize new context
*/
PH7_PRIVATE void SHA1Init(SHA1Context *context) {
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/*
* Run your data through this.
*/
PH7_PRIVATE void SHA1Update(SHA1Context *context, const unsigned char *data, unsigned int len) {
unsigned int i, j;
j = context->count[0];
if((context->count[0] += len << 3) < j) {
context->count[1] += (len >> 29) + 1;
}
j = (j >> 3) & 63;
if((j + len) > 63) {
(void)SyMemcpy(data, &context->buffer[j], (i = 64 - j));
SHA1Transform(context->state, context->buffer);
for(; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
} else {
i = 0;
}
(void)SyMemcpy(&data[i], &context->buffer[j], len - i);
}
/*
* Add padding and return the message digest.
*/
PH7_PRIVATE void SHA1Final(SHA1Context *context, unsigned char digest[20]) {
unsigned int i;
unsigned char finalcount[8];
for(i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3 - (i & 3)) * 8)) & 255); /* Endian independent */
}
SHA1Update(context, (const unsigned char *)"\200", 1);
while((context->count[0] & 504) != 448) {
SHA1Update(context, (const unsigned char *)"\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
if(digest) {
for(i = 0; i < 20; i++)
digest[i] = (unsigned char)
((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
}
#undef Rl0
#undef Rb0
#undef R1
#undef R2
#undef R3
#undef R4
PH7_PRIVATE sxi32 SySha1Compute(const void *pIn, sxu32 nLen, unsigned char zDigest[20]) {
SHA1Context sCtx;
SHA1Init(&sCtx);
SHA1Update(&sCtx, (const unsigned char *)pIn, nLen);
SHA1Final(&sCtx, zDigest);
return SXRET_OK;
}
static const sxu32 crc32_table[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
#define CRC32C(c,d) (c = ( crc32_table[(c ^ (d)) & 0xFF] ^ (c>>8) ) )
static sxu32 SyCrc32Update(sxu32 crc32, const void *pSrc, sxu32 nLen) {
register unsigned char *zIn = (unsigned char *)pSrc;
unsigned char *zEnd;
if(zIn == 0) {
return crc32;
}
zEnd = &zIn[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
CRC32C(crc32, zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
CRC32C(crc32, zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
CRC32C(crc32, zIn[0]);
zIn++;
if(zIn >= zEnd) {
break;
}
CRC32C(crc32, zIn[0]);
zIn++;
}
return crc32;
}
PH7_PRIVATE sxu32 SyCrc32(const void *pSrc, sxu32 nLen) {
return SyCrc32Update(SXU32_HIGH, pSrc, nLen);
}
#endif /* PH7_DISABLE_HASH_FUNC */
#endif /* PH7_DISABLE_BUILTIN_FUNC */
#ifndef PH7_DISABLE_BUILTIN_FUNC
PH7_PRIVATE sxi32 SyBinToHexConsumer(const void *pIn, sxu32 nLen, ProcConsumer xConsumer, void *pConsumerData) {
static const unsigned char zHexTab[] = "0123456789abcdef";
const unsigned char *zIn, *zEnd;
unsigned char zOut[3];
sxi32 rc;
#if defined(UNTRUST)
if(pIn == 0 || xConsumer == 0) {
return SXERR_EMPTY;
}
#endif
zIn = (const unsigned char *)pIn;
zEnd = &zIn[nLen];
for(;;) {
if(zIn >= zEnd) {
break;
}
zOut[0] = zHexTab[zIn[0] >> 4];
zOut[1] = zHexTab[zIn[0] & 0x0F];
rc = xConsumer((const void *)zOut, sizeof(char) * 2, pConsumerData);
if(rc != SXRET_OK) {
return rc;
}
zIn++;
}
return SXRET_OK;
}
#endif /* PH7_DISABLE_BUILTIN_FUNC */