exectos/xtldr/memory.c
2023-01-11 23:26:54 +01:00

531 lines
17 KiB
C

/**
* PROJECT: ExectOS
* COPYRIGHT: See COPYING.md in the top level directory
* FILE: xtldr/memory.c
* DESCRIPTION: EFI memory management
* DEVELOPERS: Rafal Kupiec <belliash@codingworkshop.eu.org>
*/
#include <xtbl.h>
/**
* Adds a physical to virtual address mapping to the linked list for future processing.
*
* @param MemoryMapping
* Supplies the head of the memory mapping list.
*
* @param VirtualAddress
* Supplies a virtual address where the physical address should be mapped.
*
* @param PhysicalAddress
* Supplies a physical address which will be mapped.
*
* @param NumberOfPages
* Supplies a number of pages which will be mapped.
*
* @param MemoryType
* Supplies the type of memory that will be assigned to the memory descriptor.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlAddVirtualMemoryMapping(IN PLIST_ENTRY MemoryMappings,
IN PVOID VirtualAddress,
IN PVOID PhysicalAddress,
IN UINT NumberOfPages,
IN LOADER_MEMORY_TYPE MemoryType)
{
PLOADER_MEMORY_MAPPING Mapping1, Mapping2, Mapping3;
PVOID PhysicalAddressEnd, PhysicalAddress2End;
PLIST_ENTRY ListEntry, MappingListEntry;
SIZE_T NumberOfMappedPages;
EFI_STATUS Status;
/* Allocate memory for new mapping */
Status = BlEfiMemoryAllocatePool(sizeof(LOADER_MEMORY_MAPPING), (PVOID *)&Mapping1);
if(Status != STATUS_EFI_SUCCESS)
{
/* Memory allocation failure */
return Status;
}
/* Set mapping fields */
Mapping1->PhysicalAddress = PhysicalAddress;
Mapping1->VirtualAddress = VirtualAddress;
Mapping1->NumberOfPages = NumberOfPages;
Mapping1->MemoryType = MemoryType;
/* Calculate the end of the physical address */
PhysicalAddressEnd = (PUINT8)PhysicalAddress + (NumberOfPages * EFI_PAGE_SIZE) - 1;
/* Iterate through all the mappings already set to insert new mapping at the correct place */
ListEntry = MemoryMappings->Flink;
while(ListEntry != MemoryMappings)
{
/* Take a mapping from the list and calculate its end of physical address */
Mapping2 = CONTAIN_RECORD(ListEntry, LOADER_MEMORY_MAPPING, ListEntry);
PhysicalAddress2End = (PUINT8)Mapping2->PhysicalAddress + (Mapping2->NumberOfPages * EFI_PAGE_SIZE) - 1 ;
/* Check if they overlap */
if(PhysicalAddressEnd > Mapping2->PhysicalAddress && PhysicalAddressEnd <= PhysicalAddress2End)
{
/* Make sure it's memory type is LoaderFree */
if(Mapping2->MemoryType != LoaderFree)
{
/* LoaderFree memory type is strictly expected */
return STATUS_EFI_INVALID_PARAMETER;
}
/* Calculate number of pages for this mapping */
NumberOfMappedPages = ((PUINT8)PhysicalAddress2End - (PUINT8)PhysicalAddressEnd) / EFI_PAGE_SIZE;
if(NumberOfMappedPages > 0)
{
/* Pages associated to the mapping, allocate memory for it */
Status = BlEfiMemoryAllocatePool(sizeof(LOADER_MEMORY_MAPPING), (PVOID*)&Mapping3);
if(Status != STATUS_EFI_SUCCESS)
{
/* Memory allocation failure */
return Status;
}
/* Set mapping fields and insert it on the top */
Mapping3->PhysicalAddress = (PUINT8)PhysicalAddressEnd + 1;
Mapping3->VirtualAddress = NULL;
Mapping3->NumberOfPages = NumberOfMappedPages;
Mapping3->MemoryType = Mapping2->MemoryType;
RtlInsertHeadList(&Mapping2->ListEntry, &Mapping3->ListEntry);
}
/* Calculate number of pages and the end of the physical address */
Mapping2->NumberOfPages = ((PUINT8)PhysicalAddressEnd + 1 -
(PUINT8)Mapping2->PhysicalAddress) / EFI_PAGE_SIZE;
PhysicalAddress2End = (PUINT8)Mapping2->PhysicalAddress + (Mapping2->NumberOfPages * EFI_PAGE_SIZE) - 1;
}
/* Check if they overlap */
if(Mapping1->PhysicalAddress > Mapping2->PhysicalAddress && Mapping1->PhysicalAddress < PhysicalAddress2End)
{
/* Make sure it's memory type is LoaderFree */
if(Mapping2->MemoryType != LoaderFree)
{
/* LoaderFree memory type is strictly expected */
return STATUS_EFI_INVALID_PARAMETER;
}
/* Calculate number of pages for this mapping */
NumberOfMappedPages = ((PUINT8)PhysicalAddress2End + 1 - (PUINT8)Mapping1->PhysicalAddress) / EFI_PAGE_SIZE;
if(NumberOfMappedPages > 0)
{
/* Pages associated to the mapping, allocate memory for it */
Status = BlEfiMemoryAllocatePool(sizeof(LOADER_MEMORY_MAPPING), (PVOID*)&Mapping3);
if(Status != STATUS_EFI_SUCCESS)
{
/* Memory allocation failure */
return Status;
}
/* Set mapping fields and insert it on the top */
Mapping3->PhysicalAddress = Mapping1->PhysicalAddress;
Mapping3->VirtualAddress = NULL;
Mapping3->NumberOfPages = NumberOfMappedPages;
Mapping3->MemoryType = Mapping2->MemoryType;
RtlInsertHeadList(&Mapping2->ListEntry, &Mapping3->ListEntry);
}
/* Calculate number of pages and the end of the physical address */
Mapping2->NumberOfPages = ((PUINT8)Mapping1->PhysicalAddress -
(PUINT8)Mapping2->PhysicalAddress) / EFI_PAGE_SIZE;
PhysicalAddress2End = (PUINT8)Mapping2->PhysicalAddress + (Mapping2->NumberOfPages * EFI_PAGE_SIZE) - 1;
}
/* Check if mapping is really needed */
if((Mapping2->PhysicalAddress >= Mapping1->PhysicalAddress && PhysicalAddress2End <= PhysicalAddressEnd) ||
(Mapping2->NumberOfPages == 0))
{
/* Make sure it's memory type is LoaderFree */
if(Mapping2->MemoryType != LoaderFree)
{
/* LoaderFree memory type is strictly expected */
return STATUS_EFI_INVALID_PARAMETER;
}
/* Store address of the next mapping */
MappingListEntry = ListEntry->Flink;
/* Remove mapping from the list and free up it's memory */
RtlRemoveEntryList(&Mapping2->ListEntry);
BlEfiMemoryFreePool(Mapping2);
ListEntry = MappingListEntry;
/* Go to the next mapping */
continue;
}
/* Determine phsical address order */
if(Mapping2->PhysicalAddress > Mapping1->PhysicalAddress)
{
/* Insert new mapping in front */
RtlInsertHeadList(Mapping2->ListEntry.Blink, &Mapping1->ListEntry);
return STATUS_EFI_SUCCESS;
}
/* Get next mapping from the list */
ListEntry = ListEntry->Flink;
}
/* Insert new mapping to the end of the list and return success */
RtlInsertTailList(MemoryMappings, &Mapping1->ListEntry);
return STATUS_EFI_SUCCESS;
}
/**
* Converts an EFI memory type into an XTOS memory type.
*
* @param EfiMemoryType
* Supplies the EFI memory type.
*
* @return Returns a conversion of the memory type.
*
* @since XT 1.0
*/
XTCDECL
LOADER_MEMORY_TYPE
BlConvertEfiMemoryType(IN EFI_MEMORY_TYPE EfiMemoryType)
{
LOADER_MEMORY_TYPE MemoryType;
/* Check EFI memory type and convert to XTOS memory type */
switch(EfiMemoryType)
{
case EfiACPIMemoryNVS:
case EfiACPIReclaimMemory:
case EfiPalCode:
MemoryType = LoaderSpecialMemory;
break;
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
MemoryType = LoaderFirmwarePermanent;
break;
case EfiBootServicesData:
case EfiLoaderCode:
case EfiLoaderData:
MemoryType = LoaderFirmwareTemporary;
break;
case EfiUnusableMemory:
MemoryType = LoaderBad;
break;
default:
MemoryType = LoaderFree;
break;
}
/* Return XTOS memory type */
return MemoryType;
}
/**
* This routine allocates one or more 4KB pages.
*
* @param Pages
* The number of contiguous 4KB pages to allocate.
*
* @param Memory
* The pointer to a physical address.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlEfiMemoryAllocatePages(IN UINT64 Pages,
OUT PEFI_PHYSICAL_ADDRESS Memory)
{
return EfiSystemTable->BootServices->AllocatePages(AllocateAnyPages, EfiLoaderData, Pages, Memory);
}
/**
* This routine allocates a pool memory.
*
* @param Size
* The number of bytes to allocate from the pool.
*
* @param Memory
* The pointer to a physical address.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlEfiMemoryAllocatePool(IN UINT_PTR Size,
OUT PVOID *Memory)
{
/* Allocate pool */
return EfiSystemTable->BootServices->AllocatePool(EfiLoaderData, Size, Memory);
}
/**
* This routine frees memory pages.
*
* @param Pages
* The number of contiguous 4 KB pages to free.
*
* @param Memory
* The base physical address of the pages to be freed.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlEfiMemoryFreePages(IN UINT64 Pages,
IN EFI_PHYSICAL_ADDRESS Memory)
{
return EfiSystemTable->BootServices->FreePages(Memory, Pages);
}
/**
* Returns pool memory to the system.
*
* @param Memory
* The pointer to the buffer to free.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlEfiMemoryFreePool(IN PVOID Memory)
{
/* Free pool */
return EfiSystemTable->BootServices->FreePool(Memory);
}
/**
* Returns the memory descriptors which define a memory map of all the physical memory ranges reserved by the UEFI.
*
* @param MemoryMap
* Supplies a pointer to the buffer where memory map will be written.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlGetMemoryMap(OUT PEFI_MEMORY_MAP MemoryMap)
{
EFI_STATUS Status;
if(MemoryMap == NULL)
{
return STATUS_EFI_INVALID_PARAMETER;
}
MemoryMap->Map = NULL;
MemoryMap->MapSize = 0;
/* Get memory map */
do
{
/* Attempt do get EFI memory map */
Status = EfiSystemTable->BootServices->GetMemoryMap(&MemoryMap->MapSize, MemoryMap->Map, &MemoryMap->MapKey,
&MemoryMap->DescriptorSize, &MemoryMap->DescriptorVersion);
if(Status == STATUS_EFI_SUCCESS)
{
/* Go further if succeeded */
break;
}
else if(Status != STATUS_EFI_BUFFER_TOO_SMALL)
{
/* Some error occurred */
if(MemoryMap->Map)
{
/* Free allocated memory */
BlEfiMemoryFreePool(MemoryMap->Map);
}
return Status;
}
/* Allocate the desired amount of memory */
MemoryMap->MapSize += 2 * MemoryMap->DescriptorSize;
BlEfiMemoryAllocatePool(MemoryMap->MapSize, (PVOID *)&MemoryMap->Map);
}
while(Status == STATUS_EFI_BUFFER_TOO_SMALL);
/* Make sure memory map is set */
if(MemoryMap->Map == NULL)
{
/* Something went wrong */
return STATUS_EFI_NO_MAPPING;
}
/* Return success */
return STATUS_EFI_SUCCESS;
}
/**
* Attempts to find a virtual address of the specified physical address in memory mappings.
*
* @param MemoryMappings
* Supplies a pointer to linked list containing all memory mappings.
*
* @param PhysicalAddress
* Supplies a physical address to search for in the mappings.
*
* @param VirtualAddress
* Supplies a buffer, where mapped virtual address of the found mapping will be stored.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlGetVirtualAddress(IN PLIST_ENTRY MemoryMappings,
IN PVOID PhysicalAddress,
OUT PVOID *VirtualAddress)
{
PLOADER_MEMORY_MAPPING Mapping;
PLIST_ENTRY ListEntry;
/* NULLify virtual address */
*VirtualAddress = NULL;
/* Iterate over memory mappings in order to find descriptor containing a physical address */
ListEntry = MemoryMappings->Flink;
while(ListEntry != MemoryMappings)
{
/* Get mapping from linked list */
Mapping = CONTAIN_RECORD(ListEntry, LOADER_MEMORY_MAPPING, ListEntry);
/* Make sure any virtual address is set */
if(Mapping->VirtualAddress)
{
/* Check if provided physical address is in range of this mapping */
if((PhysicalAddress >= Mapping->PhysicalAddress) &&
(PhysicalAddress < Mapping->PhysicalAddress + (Mapping->NumberOfPages * EFI_PAGE_SIZE)))
{
/* Calculate virtual address based on the mapping */
*VirtualAddress = PhysicalAddress - Mapping->PhysicalAddress + Mapping->VirtualAddress;
}
}
/* Get next element from the list */
ListEntry = ListEntry->Flink;
}
/* If virtual address is still NULL, then mapping was not found */
if(*VirtualAddress == NULL)
{
/* Mapping not found */
return STATUS_EFI_NOT_FOUND;
}
/* Mapping found, return success */
return STATUS_EFI_SUCCESS;
}
/**
* Initializes virtual memory by adding known and general mappings.
*
* @param MemoryMappings
* Supplies a pointer to linked list containing all memory mappings.
*
* @param MemoryMapAddress
* Supplies an address of the mapped virtual memory area.
*
* @return This routine returns a status code.
*
* @since XT 1.0
*/
XTCDECL
EFI_STATUS
BlInitializeVirtualMemory(IN OUT PLIST_ENTRY MemoryMappings,
IN OUT PVOID *MemoryMapAddress)
{
PEFI_MEMORY_DESCRIPTOR Descriptor;
LOADER_MEMORY_TYPE MemoryType;
PEFI_MEMORY_MAP MemoryMap;
SIZE_T DescriptorCount;
PUCHAR VirtualAddress;
EFI_STATUS Status;
SIZE_T Index;
/* Set initial virtual address */
VirtualAddress = *MemoryMapAddress;
/* Allocate and zero-fill buffer for EFI memory map */
BlEfiMemoryAllocatePool(sizeof(EFI_MEMORY_MAP), (PVOID*)&MemoryMap);
RtlZeroMemory(MemoryMap, sizeof(EFI_MEMORY_MAP));
/* Get EFI memory map */
Status = BlGetMemoryMap(MemoryMap);
if(Status != STATUS_EFI_SUCCESS)
{
return Status;
}
/* Calculate descriptors count and get first one */
Descriptor = MemoryMap->Map;
DescriptorCount = MemoryMap->MapSize / MemoryMap->DescriptorSize;
/* Iterate through all descriptors from the memory map */
for(Index = 0; Index < DescriptorCount; Index++)
{
/* Make sure descriptor does not go beyond lowest physical page */
if((Descriptor->PhysicalStart + (Descriptor->NumberOfPages * EFI_PAGE_SIZE)) <= (UINT_PTR)-1)
{
/* Convert EFI memory type into XTOS memory type */
MemoryType = BlConvertEfiMemoryType(Descriptor->Type);
/* Do memory mappings depending on memory type */
if(MemoryType == LoaderFirmwareTemporary)
{
/* Map EFI firmware code */
Status = BlAddVirtualMemoryMapping(MemoryMappings, (PVOID)Descriptor->PhysicalStart,
(PVOID)Descriptor->PhysicalStart, Descriptor->NumberOfPages, MemoryType);
}
else if(MemoryType != LoaderFree)
{
/* Add any non-free memory mapping */
Status = BlAddVirtualMemoryMapping(MemoryMappings, VirtualAddress, (PVOID)Descriptor->PhysicalStart,
Descriptor->NumberOfPages, MemoryType);
/* Calculate next valid virtual address */
VirtualAddress += Descriptor->NumberOfPages * EFI_PAGE_SIZE;
}
else
{
/* Map all other memory as loader free */
Status = BlAddVirtualMemoryMapping(MemoryMappings, NULL, (PVOID)Descriptor->PhysicalStart,
Descriptor->NumberOfPages, LoaderFree);
}
/* Make sure memory mapping succeeded */
if(Status != STATUS_EFI_SUCCESS)
{
/* Mapping failed */
return Status;
}
/* Grab next descriptor */
Descriptor = (PEFI_MEMORY_DESCRIPTOR)((PUCHAR)Descriptor + MemoryMap->DescriptorSize);
}
}
/* Store next valid virtual address and return success */
*MemoryMapAddress = VirtualAddress;
return STATUS_EFI_SUCCESS;
}